

Research article

Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

On (1,2)*- **G**^{*''*}-**Regular Space In Bitopological Spaces**

Dr. A. ArivuChelvam*

Assistant Professor, Department of Mathematics, MannarThirumalaiNaickercollege, Madurai, India. Email: <u>arivuchelvam2008@gmail.com</u>

ABSTRACT

In this paper, we introduce $(1,2)^*$ - g^m-regular space in bitopological spaces. We obtain several characterizations of $(1,2)^*$ - g^m-regular space in some preservation theorems for $(1,2)^*$ -g^m-regular.

KEYWORDS:(1,2)*- g^m-regular spaces, (1,2)*-g^m-regular, (1,2)*- g^m-neighborhood, (1,2)*- g^m-open set, (1,2)*-g^m g^m-space.

*Corresponding Author

Dr. A. ArivuChelvam*

Assistant Professor, Department of Mathematics,

MannarThirumalaiNaickercollege,

Madurai, India.

Email: arivuchelvam2008@gmail.com

1. INTRODUCTION

Using g-closed sets, Munshi¹introduced g-regular in topological spaces. In a similar way, Sheik John²introduced ω -regular using ω -closed sets in topological spaces.

2. SOME DEFINITIONS AND THEOREMS

Definition 2.1

A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called a weakly $(1,2)^*$ - continuous if for each point $x \in X$ and each $\sigma_{1,2}$ -open set V in (Y, σ_1, σ_2) containing f(x), there exists an $\tau_{1,2}$ -open set U containing x such that $f(U) \subseteq \sigma_{1,2}$ - cl(V).

Definition 2.2

A space (X, τ_1 , τ_2) is called a (1,2)*-gT g^m-space if every (1,2)*-g- closed set in it is (1,2)*- g^m-closed.

Definition 2.3

A bitopological space (X, τ_1 , τ_2) will be termed symmetric if and only if for x and y in (X, τ_1 , τ_2), $x \in \tau_{1,2}$ -cl(y) implies that $y \in \tau_{1,2}$ -cl(x).

Definition 2.4

For a subset A of a bitopological space (X, τ_1 , τ_2), $\tau_{1,2}$ -cl_{θ}(A) = {x \in X: $\tau_{1,2}$ -cl(U) \cap A $\neq \phi$, U is $\tau_{1,2}$ -open set containing x}.

Theorem 2.5

A set A is $(1,2)^*$ - g^m-open if and only if $F \subseteq \tau_{1,2}$ -int(A) whenever F is $(1,2)^*$ -gs-closed and $F \subseteq A$.

Theorem 2.6

The space (X, τ_1, τ_2) is symmetric if and only if $\{x\}$ is $(1,2)^*$ -g-closed in (X, τ_1, τ_2) for each point x of (X, τ_1, τ_2) .

Definition 2.7

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function. Then f is called

(i) $(1,2)^*$ - g^{*m*}-continuous if the inverse image of every $\sigma_{1,2}$ -closed set of Y is $(1,2)^*$ - g^{*m*}-closed in X.

(ii) (1,2)*- g^m-irresolute if the inverse image of every (1,2)*- g^m-closed set of Y is (1,2)*- g^m-closed in

X. (iii) pre-(1,2)*-gs-open if the image of every (1,2)*-gs-open set of X is(1,2)*-gs-open set in Y.

(iv) (1,2)*-open if the image of every $\tau_{1,2}$ -open set of X is $\sigma_{1,2}$ -open in Y.

(v) $(1,2)^*$ -gs-irresolute if the inverse image of every $(1,2)^*$ -gs-closed set of Y is $(1,2)^*$ -gs-closed in X.

(vi) $(1,2)^*$ - g^m-closed if the image of every $\tau_{1,2}$ -closed set of X is $(1,2)^*$ - g^m- closed in Y.

(vii) (1, 2)*-continuous ³ if for each $\sigma_{1,2}$ -open set V of Y, $f^{1}(V)$ is $\tau_{1,2}$ - open in X.

Theorem 2.8

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is bijective, pre-(1,2)*-gs-open and (1,2)*-g'''-continuous, then f is (1,2)*- g'''-irresolute.

Definition 2.9

Let (X, τ_1, τ_2) be a bitopological space. Let x be a point of X and G be a subset of X. Then G is called an $(1,2)^*$ - g^{'''}-neighborhood of x (briefly, $(1,2)^*$ - g^{'''}-neighborhood of x) in X if there exists an $(1,2)^*$ - g^{'''}-open set U of X such that $x \in U \subseteq G$.

3. (1,2)*- α g^{*m*}-REGULAR SPACE

We introduce the following definition.

Definition 3.1

A space (X, τ_1, τ_2) is said to be $(1,2)^*$ - g'''-regular if for every $(1,2)^*$ - g'''-closed set F and each point x $\notin F$, there exist disjoint $\tau_{1,2}$ -open sets U and V such that $F \subseteq U$ and $x \in V$.

Theorem 3.2

Let (X, τ_1, τ_2) be a bitopological space.

Then the following statements are equivalent:

- (i) (X, τ_1, τ_2) is a $(1,2)^*$ g'''-regular space.
- (ii) For each $x \in X$ and $(1,2)^*$ g^m-neighborhood W of x there exists an $\tau_{1,2}$ open neighborhood V of x such that $\tau_{1,2}$ -cl(V) \subseteq W.

Proof

(i) ⇒(ii). Let W be any (1,2)*- g^{*m*}-neighborhood of x. Then there exist a (1,2)*- g^{*m*}-open set G such that x ∈G ⊆W. Since G^c is (1,2)*- g^{*m*}-closed and x ∉G^c, by hypothesis there exist $\tau_{1,2}$ -open sets U and V such that G^c⊆U, x ∈V and U ∩ V = φ and so V ⊆U^c. Now, $\tau_{1,2}$ -cl(V) ⊆ $\tau_{1,2}$ -cl(U^c) = U^c and G^c⊆U implies U^c⊆G⊆W. Therefore $\tau_{1,2}$ -cl(V) ⊆W.

(ii) \Rightarrow (i). Let F be any $(1,2)^*$ - g^m-closed set and x \notin F. Then x \in F^c and F^c is $(1,2)^*$ - g^m-open and so F^c is a $(1,2)^*$ - g^m-neighborhood of x. By hypothesis, there exists an τ 1,2-open neighborhood V of x such that x \in V and τ 1,2-cl(V) \subseteq F^c, which implies F \subseteq $(\tau$ 1,2-cl(V))^c. Then $(\tau$ 1,2-cl(V))^c is an τ _{1,2}-open set containing F and V \cap $(\tau_{1,2}$ -cl(V))^c = ϕ . Therefore, X is $(1,2)^*$ - g^m-regular^{4,5,6,7}.

Theorem 3.3

For a space (X, τ_1 , τ_2) the following are equivalent:

(i) (X, τ_1, τ_2) is $(1,2)^*$ -normal.

(ii) For every pair of disjoint $\tau_{1,2}$ -closed sets A and B, there exist $(1,2)^*$ - g'''- open sets U and V such that $A \subseteq U, B \subseteq V$ and $U \cap V = \varphi$.

Proof

(i) \Rightarrow (ii). Let A and B be disjoint $\tau_{1,2}$ -closed subsets of (X, τ_1 , τ_2). By hypothesis, there exist disjoint $\tau_{1,2}$ -open sets (and hence (1,2)*- g^m-open sets) U and V such that A \subseteq U and B \subseteq V.

(ii) \Rightarrow (i). Let A and B be $\tau_{1,2}$ -closed subsets of (X, τ_1 , τ_2). Then by assumption, A \subseteq G, B \subseteq H and G \cap H = φ , where G and H are disjoint (1,2)*-g^m-open sets. Since A and B are (1,2)*-gs-closed, by Theorem 2.5, A $\subseteq \tau_{1,2}$ - int(G) and B $\subseteq \tau_{1,2}$ -int(H). Further, $\tau_{1,2}$ -int(G) $\cap \tau_{1,2}$ -int(H) = $\tau_{1,2}$ -int(G \cap H)= φ^{s} .

Theorem 3.4

A (1,2)*-gT g^m-space (X, τ_1 , τ_2) is symmetric if and only if {x} is(1,2)*- g^m-closed in (X, τ_1 , τ_2) for each point x of (X, τ_1 , τ_2).

Proof

Follows from Definitions 2.2, 2.3 and Theorem 2.6.

Theorem 3.5

A bitopological space (X, τ_1, τ_2) is $(1,2)^*$ - g^{*m*}-regular if and only if for each $(1,2)^*$ - g^{*m*}-closed set F of (X, τ_1, τ_2) and each x \in Fc there exist $\tau_{1,2}$ -open sets U and V of (X, τ_1, τ_2) such that x \in U, F \subseteq V and $\tau_{1,2}$ - cl(U) $\cap \tau_{1,2}$ -cl(V) = φ .

Proof

Let F be a $(1,2)^*$ - g^{'''}-closed set of (X, τ_1, τ_2) and $x \notin F$. Then there exist $\tau_{1,2}$ -open sets U_0 and V of (X, τ_1, τ_2) such that $x \in U=$, $F \subseteq V$ and $U_0 \cap V = \varphi$, which implies $U_0 \cap \tau_{1,2}$ -cl $(V) = \varphi$. Since $\tau_{1,2}$ -cl(V) is $\tau_{1,2}$ -closed, it is $(1,2)^*$ -g^{'''}-closed and $x \notin \tau_{1,2}$ -cl(V). Since (X, τ_1, τ_2) is $(1,2)^*$ -g^{'''}-regular, there exist $\tau_{1,2}$ -open sets G and H of (X, τ_1, τ_2) such that $x \in G$, $\tau_{1,2}$ -cl $(V) \subseteq H$ and $G \cap H = \varphi$, which implies $\tau_{1,2}$ -cl $(G) \cap H = \varphi$. Let $U = U_0 \cap G$, then U and V are $\tau_{1,2}$ -open sets of (X, τ_1, τ_2) such that $x \in U$, $F \subseteq V$ and $\tau_{1,2}$ -cl $(U) \cap \tau_{1,2}$ - cl $(V) = \varphi^9$.

Converse part is trivial.

Corollary 3.6

If a space (X, τ_1 , τ_2) is (1,2)*- g^m-regular, symmetric and (1,2)*-gT g^m- space, then it is (1,2)*-Urysohn.

Proof

Let x and y be any two distinct points of (X, τ_1, τ_2) . Since (X, τ_1, τ_2) issymmetric and $(1,2)^*-gTg'''$ space, $\{x\}$ is $(1,2)^*-g'''$ -closed by Theorem 3.4. Therefore, by Theorem 3.5, there exist $\tau_{1,2}$ -open sets U and V such that $x \in U$, $y \in V$ and $\tau_{1,2}$ -cl $(U) \cap \tau_{1,2}$ -cl $(V) = \varphi^{10}$.

Theorem 3.7

Let (X, τ_1, τ_2) be a bitopological space. Then the following statements are equivalent:

- (i) (X, τ_1, τ_2) is $(1,2)^*$ -g'''-regular.
- (ii) For each point $x \in X$ and for each $(1,2)^*$ g'''-neighborhood W of x, there exists an $\tau_{1,2}$ -open neighborhood V of x such that $\tau_{1,2}$ -cl(V) \subseteq W.
- (iii) For each point $x \in X$ and for each $(1,2)^*$ g'''-closed set F not containing x, there exists an $\tau_{1,2}$ -open neighborhood V of x such that $\tau_{1,2}$ -cl(V) $\cap F = \varphi$.

Proof

(i) \Leftrightarrow (ii). It is obvious from Theorem 3.2.

(ii) \Rightarrow (iii). Let $x \in X$ and F be a (1,2)*- g^m-closed set such that $x \notin F$. Then Fc is a (1,2)*- g^m-neighborhood of x and by hypothesis, there exists an $\tau_{1,2}$ -open neighborhood V of x such that $\tau_{1,2}$ -cl(V) \subseteq Fc and hence $\tau_{1,2}$ -cl(V) \cap F = ϕ .

(iii) \Rightarrow (ii). Let $x \in X$ and W be a (1,2)*- g^m-neighborhood of x. Then there exists a (1,2)*- g^m-open set G such that $x \in G \subseteq W$. Since G^c is (1,2)*- g^m- closed and $x \notin G^c$, by hypothesis there exists an $\tau_{1,2}$ -open neighborhood V of x such that $\tau_{1,2}$ -cl(V) $\cap G^c = \varphi$. Therefore, $\tau_{1,2}$ -cl(V) $\subseteq G \subseteq W^m$.

Theorem 3.8

The following are equivalent for a space (X, τ_1, τ_2) .

- (i) (X, τ_1, τ_2) is $(1,2)^*$ -g'''-regular.
- (i) $\tau_{1,2}$ -cl_{θ}(A) = (1,2)*- g^m-cl(A) for each subset A of (X, τ_1 , τ_2).
- (ii) $\tau_{1,2}$ -cl_{θ}(A) = A for each (1,2)*- g'''-closed set A.

Proof

(i) \Rightarrow (ii). For any subset A of (X, τ_1 , τ_2), we have always A \subseteq (1,2)*- g^{*m*}-cl(A) \subseteq $\tau_{1,2}$ -cl_{θ}(A). Let x \in ((1,2)*- g^{*m*}-cl(A))^c. Then there exists a (1,2)*- g^{*m*}-closed set F such that x \in F^c and A \subseteq F. By assumption, there exist disjoint $\tau_{1,2}$ -open sets U and V such that x \in U and F \subseteq V. Now, x \in U \subseteq $\tau_{1,2}$ -cl(U) \subseteq V^c \subseteq Fc \subseteq Ac and therefore $\tau_{1,2}$ -cl(U) \cap A = ϕ . Thus, x \in ($\tau_{1,2}$ -cl_{θ}(A))^c and hence $\tau_{1,2}$ - cl_{θ}(A) = (1,2)*- g^{*m*}-cl(A).

(ii) \Rightarrow (iii). It is trivial.

(iii) \Rightarrow (i). Let F be any (1,2)*- g^m-closed set and $x \in F^c$. Since F is (1,2)*- g^m- closed, by assumption $x \in (\tau_{1,2} - cl_0(F))^c$ and so there exists an $\tau_{1,2}$ -open set U such that $x \in U$ and $\tau_{1,2}$ -cl(U) $\cap F = \varphi$. Then $F \subseteq (\tau_{1,2} - cl(U))^c$. Let

 $V = (\tau_{1,2}-cl(U))^c$. Then V is an $\tau_{1,2}$ -open such that $F \subseteq V$. Also, the sets U and V are disjoint and hence (X, τ_1, τ_2) are $(1,2)^*$ - g^{*m*}-regular^{12,13}.

Theorem 3.9

If (X, τ_1, τ_2) is a $(1,2)^*$ - g^{*m*}-regular space and f : $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is bijective, pre-(1,2)*-gs-open, $(1,2)^*$ - g^{*m*}-continuous and $(1,2)^*$ -open, then (Y, σ_1, σ_2) is $(1,2)^*$ - g^{*m*}-regular.

Proof

Let F be any $(1,2)^*$ - g^{'''}-closed subset of (Y, σ_1, σ_2) and $y \notin F$. Since the function f is $(1,2)^*$ - g^{'''}-irresolute by Theorem 2.8, we have $f^1(F)$ is $(1,2)^*$ -g^{'''}-closed in (X, τ_1, τ_2) . Since f is bijective, let f(x) = y, then $x \notin f^1(F)$. By hypothesis, there exist disjoint $\tau_{1,2}$ -open sets U and V such that $x \in U$ and $f^1(F) \subseteq V$. Since f is $(1,2)^*$ -open and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = \varphi$. This shows that the space (Y, σ_1, σ_2) is also $(1,2)^*$ - g^{'''}-regular¹⁴.

Proposition 3.10

If f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -gs-irresolute $(1,2)^*$ -g^m-closed and A is an $(1,2)^*$ -g^m-closed subset of X then f(A) is $(1,2)^*$ -g^m-closed in Y.

Proof

Let U be a $(1,2)^*$ -gs-open set in Y such that $f(A) \subseteq U$. Since f is $(1,2)^*$ -gs-irresolute, $f^1(U)$ is a $(1,2)^*$ -gs-open set containing A. Hence $\tau_{1,2}$ -cl(A) $\subseteq f^1(U)$ as A is $(1,2)^*$ -g^m-closed in X. Since f is $(1,2)^*$ -g^m-closed, $f(\tau_{1,2}$ -cl(A)) is an $(1,2)^*$ -g^m-closed set contained in the

 $(1,2)^*$ -gs-open set U, which implies that $\sigma_{1,2}$ -cl $(f(\tau_{1,2}$ -cl $(A))) \subseteq U$ and $\sigma_{1,2}$ -cl $(f(A)) \subseteq U$. Therefore f(A) is an $(1,2)^*$ - g^m-closed set in Y¹⁵.

Theorem 3.11

If $f: (X, \tau_1, \tau^2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -gs-irresolute $(1,2)^*$ - g'''-closed $(1,2)^*$ -continuous injection and (Y, σ_1, σ_2) is $(1,2)^*$ - g'''-regular, then (X, τ_1, τ_2) is $(1,2)^*$ - g'''-regular.

Proof

Let F be any $(1,2)^*$ - g^{'''}-closed set of (X, τ_1, τ_2) and $x \notin F$. Since f is $(1,2)^*$ -gs-irresolute $(1,2)^*$ - g^{'''}-closed, by Proposition 3.3.10, f(F) is $(1,2)^*$ - g^{'''}- closed in (Y, σ_1, σ_2) and $f(x) \notin f(F)$. Since (Y, σ_1, σ_2) is $(1,2)^*$ - g^{'''}regular and so there exist disjoint $\sigma_{1,2}$ -open sets U and V in (Y, σ_1, σ_2) such that $f(x) \in U$ and $f(F) \subseteq V$. i.e., $x \in f^1(U), F \subseteq f^1(V)$ and $f^1(U) \cap f^1(V) = \varphi$. Therefore, (X, τ_1, τ_2) is $(1,2)^*$ - g^{'''}-regular¹⁶.

Theorem 3.12

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is weakly (1,2)*-continuous (1,2)*- g^m- closed injection and (Y, σ_1, σ_2) is (1,2)*-g^m-regular, then (X, τ_1, τ_2) is (1,2)*-regular.

Proof

Let F be any $\tau_{1,2}$ -closed set of (X, τ_1, τ_2) and $x \notin F$. Since f is $(1,2)^*$ - g^m- closed, f(F) is $(1,2)^*$ - g^m-closed in (Y, σ_1, σ_2) and f(x) \notin f(F). Since (Y, σ_1, σ_2) is $(1,2)^*$ - g^m-regular

by Theorem 3.5 there exist $\sigma_{1,2}$ -open sets U and V such that $f(x) \in U$, $f(F) \subseteq V$ and $\sigma_{1,2}$ -cl(U) $\cap \sigma_{1,2}$ -cl(V) = φ . Since f is weakly (1,2)*-continuous it follows that $x \in f^1(U) \subseteq \tau_{1,2}$ -int($f^1(\sigma_{1,2}$ -cl(U))), F \subseteq f^1(V) \subseteq \tau_{1,2}-int($f^1(\sigma_{1,2}$ -cl(V))) and $\tau_{1,2}$ -int($f^1(\sigma_{1,2}$ -cl(V))) $\cap \tau_{1,2}$ -int($f^1(\sigma_{1,2}$ -cl(V))) = φ . Therefore, (X, τ_1 , τ_2) is (1,2)*-regular¹⁷.

REFERENCES:

- 1. Munshi BM et al.ActaCienciaIndica, 1986;12: 140-144
- Tong J et al. On decomposition of continuity in topological spaces, Acta Math. Hungar., 1989; 54:51-55.
- 3. Ravi O,LellisThivagarMet al. On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra. 2004; 14(6) : 481-492.
- Reilly IL, Ganster, M et al. Locally closed sets and LC-continuous functions, Internat. J. Math. Sci. 1989;12(3):417-424.
- 5. Hatir E, Noiri T, Yuksel S et al. A decomposition of continuity, Acta Math. Hungar., 70, No. 1996;2:145-150.
- LellisThivagar M, NirmalaMariappan, Jafari S et al. On (1,2)*-αĝ- closed sets, J. Adv. Math. Studies, 2009;2(2):25-34.
- 7. Ravi O, Thivagar ML, Joseph Israel, M.Kayathri K et al. Decompositions of (1,2)*-rg-continuous maps in bitopological spaces, Antarctica J. Math., 2009;6(1): 13-23.
- 8. Kelly J C et a, Bitopological spaces, Proc. London Math. Soc., 1963; 13:71-89.
- 9. Kopperman R, Meyer P, Kong T et al. A topological approach to digital topology, Amer. Math. Monthly., 1991; 98:901-917.
- 10. Ravi O, Abd El-MonsefME,LellisThivagar M et al. Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc.2008; 16(1):17-25.
- 11. Ravi O, Thivagar ML et al. Remarks on λ -irresolute functions via (1,2)*-sets, Advances in App. Math. Analysis. 2010; 5(1):1-15.
- 12. Ravi O, Ekici E, LellisThivagar M et al.On (1,2)*-sets and decompositions of bitopological (1,2)*continuous mappings, Kochi J. Math. 2008;3:181-189.

- 13. Ravi O, KayathriK, Thivagar ML, Joseph Israel M et al.Mildly (1,2)*-normal spaces and some bitopological functions, MathematicaBohemica. 2010; 135(1):1-15.
- 14. Ravi O, Pious MissierS, SalaiParkunan T et al. On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences.2010;5(11):543-557.
- 15. Ravi O, Thivagar ML, Nagarajan A et al. $(1,2)^*$ α g-closed sets and $(1,2)^*$ -g α -closed sets (submitted).
- 16. Ravi O, Thivagar ML, Ekici E et al.Decomposition of (1,2)*- continuity and complete (1,2)*- continuity in bitopological spaces, AnaleleUniversitatii Din Oradea. Fasc. Matematica Tom XV. 2008; 2:29-37.
- 17. Ravi O, Pandi A, Pious MissierS, SalaiParkunan T et al. Remarks on bitopological (1,2)*-rω-Homeomorphisms, Int. J. of Math. Arc. 2011;2(4) :465-475.