

Research article

International Journal of Scientific Research and Reviews

Product Summability (E, 1)(N, P_n) of Conjugate Series Of Fourier Series

Manju Prabhakar

Department of Mathematics, Govt. Motilal Vigyan Mahavidyalaya, Bhopal, (M.P.) India

ABSTRACT

In the present study, some results on the product summability $(E, 1)(N, P_n)$ of Conjugate Fourier series have been established.

KEYWORDS: (E, q) summability, (N, P_n) summability, $(E, 1)(N, P_n)$ summability. **MATHEMATICS SUBJECT CLASSIFICATION (2010):** 42A24, 42A20 and 42B08

*Corresponding Author

Manju Prabhakar

Department of Mathematics, Govt. Motilal Vigyan Mahavidyalaya, Bhopal, (M.P.) India Email: <u>manjuprabhakar17@gmail.com</u>; Mob No. 8770551889

INTRODUCTION

The study of Nörlund (N, P_n) suumability of Fourier series and its allied series was first studied by Mears¹ and then afterwards so many results deduced on the product summability of Nörlund means by a regular summability (i.e. in the form of X(N, P_n) or (N, P_n)X, where X is any regular summability). In the same context, Lal and Nigam², Lal and Singh³, Prasad⁴, Sahney⁵, Sinha and Shrivastava⁶ and many researchers gave interesting results under different criteria & conditions. Therefore by inspiring this, under a very general condition, we have established some results on $(E,1)(N, P_n)$ summability of conjugate series of Fourier series. As a result, we see that the product operator gives better approximated value than individual linear operator.

Let $\sum_{n=0}^{\infty} a_n$ be a given infinite series with the sequence of its partial sums $\{S_n\}$. Let $\{p_n\}$ be any

sequence of constants, real or complex, such that

$$P_n = p_0 + p_1 + p_2 + \dots + p_n$$

 $P_{-1} = p_{-1} = 0$
Therefore

The sequence-to-sequence transformation is given by

$$t_n = \frac{1}{P_n} \sum_{k=0}^n p_{n-k} s_k$$

defines the sequence $\{t_n\}$ of Nörlund means of the sequence $\{S_n\}$, as generated by the sequence of coefficients $\{p_n\}$.

The series $\sum_{n=0}^{\infty} a_n$ is said to be (N, P_n) summable to the sum s if $\lim_{n\to\infty} t_n$ exists and is equal to s.

The necessary and sufficient condition for the regularity of (N, P_n) method is

$$\frac{p_n}{P_n} \to 0 , \qquad \text{as } n \to \infty$$

Let,

$$\mathsf{E}_n^1 = \frac{1}{2^n} \sum_{k=0}^n \binom{\mathsf{n}}{k} \mathsf{s}_k$$

If $E_n^1 \to s$, as $n \to \infty$ then $\sum_{n=0}^{\infty} a_n$ is said to be summable s by Euler means. Hardy⁷

On superimposing (E, 1) transform on (N, P_n) transform, we have the product (E, 1)(N, P_n) transform t_n^{EN} of the nth partial series S_n of the series $\sum_{n=0}^{\infty} a_n$ which is given by

$$t_n^{EN} = \frac{1}{2^n} \sum_{k=0}^n {n \choose k} \left\{ \frac{1}{p_k} \sum_{v=0}^k p_{k-v} s_v \right\}$$

then, the infinite series $\sum_{n=0}^{\infty} a_n$ is said to be (E, 1)(N, P_n) summable to the sum s,

if $t_n^{EN} \rightarrow s$ as $n \rightarrow \infty$ i.e. the limit exist.

Let, f(t) be a periodic function with period 2π and Lebesgue-integrable over the interval $(-\pi,\pi)$. Then the Fourier series associated with f at any point t is defined by

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cosh t + b_n \sinh t) = \sum_{n=1}^{\infty} A_n(t)$$
(1.1)

Then the conjugate series of (1.1) is

$$\sum_{n=1}^{\infty} (b_n cosnt - a_n sinnt) = \sum_{n=1}^{\infty} B_n(t)$$
(1.2)

We use the following notations throughout this paper

$$\psi(t) = \frac{1}{2} [f(x + t) - f(x - t)]$$

and

$$\widetilde{K}_{n}(t) = \frac{1}{2^{n}} \sum_{k=0}^{n} {n \choose k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\}$$
(1.3)

KNOWN RESULTS

Recently, Sinha and Shrivastava⁶ have discussed the almost $(E,q)(N,P_n)$ summability of Fourier Series by proving the following

Theorem A. If \mathbf{I} is a 2π periodic function of class L^aip α then the degree of approximation by the product (E, q)(N, P_n) summability mean on its Fourier series (1.1) is given by

$$\|\tau_n - f\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha}}\right) \quad 0 < \alpha < 1$$
(2.1)

where, τ_n is defined as

$$\tau_n = \frac{1}{(1+q)^n} \sum_{m=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^k p_{k-\nu} S_\nu \right\}$$

Further, Prabhakar and Saxena⁸, have obtained an analogous result by generalised theorem A for $(E, 1)(N, P_n)$ summability of Fourier series under different condition and criteria. The Theorems are as follows

Theorem B. Let $\{c_n\}$ be a non-negative, monotonic, non-increasing sequence of real constants such that

such that

$$\label{eq:Cn} \begin{split} \mathsf{C}_n &= \quad \sum_{\nu=1}^n \mathsf{C}_\nu \to \infty \text{, as } n \to \infty \end{split}$$
 If

$$\Phi(t) = \int_0^t |\phi(u)| \, du = o\left[\frac{t}{\alpha\left(\frac{1}{t}\right)C_\tau}\right] \text{ as } t \to +0$$
(2.2)

where, $\alpha(t)$ is a positive, monotonic and non-increasing function of t and $\log(n + 1) = O[\{\alpha(n + 1)\}C_{n+1}]$, as $n \to \infty$ (2.3) then the Fourier series (1.1) is (E, 1)(N, P_n) summable to zero at point x.

MAIN RESULT

With this point of view, we here prove the following theorems.

Theorem 1. Let $\{c_n\}$ be a non-negative, monotonic, non-increasing sequence of real constants such that

$$C_n = \sum_{\nu=0}^n c_\nu \to \infty \text{ as } n \to \infty$$

If

$$\Psi(t) = \int_0^t |\psi(u)| du = o\left[\frac{t}{\alpha\left(\frac{1}{t}\right)C_\tau}\right] \text{ as } t \to +0$$
(3.1)

where, $\alpha(t)$ is a positive, monotonic and non-increasing function of t and $\log(n + 1) = O[\{\alpha(n + 1)\}C_{n+1}], \text{ as } n \to \infty$ (3.2) then the conjugate Fourier series (1.2) is (E, 1)(N, P_n) summable to

$$\tilde{f}(x) = -\frac{1}{2\pi} \int_0^{2\pi} \psi(t) \cot\left(\frac{t}{2}\right) dt$$

at every pt, where this integral exists.

Theorem 2: Let $\{c_n\}$ be a positive, monotonic, non-increasing sequence of real constants such that

$$C_n = \sum_{\nu=0}^n c_\nu \to \infty \text{ as } n \to \infty$$

If

$$\Psi(t) = \int_0^t |\psi(u)| du = o\left[\frac{t}{\log\left(\frac{1}{t}\right)}\right], \text{ as } t \to +0$$
(3.3)

then the conjugate Fourier series (1.2) is $(E, 1)(N, P_n)$ summable to

$$\tilde{f}(x) = -\frac{1}{2\pi} \int_0^{2\pi} \psi(t) \cot\left(\frac{t}{2}\right) dt$$

at every pt, where this integral exists.

To prove the following Theorems, we require the following lemmas.

LEMMAS

Lemma 4.1

For
$$0 \le t \le \frac{1}{n+1}$$
, $\left|\widetilde{K}_{n}(t)\right| = O\left(\frac{1}{t}\right)$

Proof.

$$\left|\widetilde{K}_{n}(t)\right| = \frac{1}{2^{n+1}\pi} \left| \sum_{k=0}^{n} {n \choose k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\} \right|$$

$$\leq \frac{1}{2^{n+1}\pi} \left[\sum_{k=0}^{n} \binom{n}{k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\left| \cos\left(\nu + \frac{1}{2}\right) t \right|}{\left| \sin \frac{t}{2} \right|} \right\} \right]$$

$$\leq \frac{1}{2^{n+1}t} \left[\sum_{k=0}^{n} {n \choose k} \frac{1}{P_k} \sum_{\nu=0}^{k} p_{k-\nu} \right]$$

$$=\frac{(2n+1)}{2^{n+1}t}.2^{n}$$

$$= O\left(\frac{1}{t}\right)$$

This completes the proof of Lemma 3.1

Lemma 4.2

For
$$\frac{1}{n+1} \le t \le \pi$$
, $\left| \widetilde{K}_n(t) \right| = O\left(\frac{1}{t}\right)$

IJSRR, 8(2) April. – June., 2019

Proof.

$$\begin{split} | \overline{K}_{n}(t) | &= \frac{1}{2^{n+1}\pi} \left| \sum_{k=0}^{n} {n \choose k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n} {n \choose k} \operatorname{Re} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} e^{i\left(\nu + \frac{1}{2}\right)t} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n} {n \choose k} \operatorname{Re} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} e^{i\nu t} \right\} \right| \left| e^{i\frac{t}{2}} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n} {n \choose k} \operatorname{Re} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} e^{i\nu t} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n} {n \choose k} \operatorname{Re} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} e^{i\nu t} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \operatorname{Re} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} e^{i\nu t} \right\} \right| \\ &= |K_{1}| + |K_{2}| \\ |K_{1}| &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \operatorname{Re} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} e^{i\nu t} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \right\} \right| |e^{i\nu t}| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^{n-1} {n \choose k} \right| \\ \\ &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=0}^$$

Now considering second term and using Abel's lemma

$$\begin{aligned} |\mathsf{K}_{2}| &\leq \frac{1}{2^{n+1}t} \left| \sum_{k=\tau}^{n} {n \choose k} \operatorname{Re} \left\{ \frac{1}{\mathsf{P}_{k}} \sum_{\nu=0}^{k} \mathsf{p}_{k-\nu} \mathsf{e}^{\mathsf{i}\nu t} \right\} \right| \\ &\leq \frac{1}{2^{n+1}t} \sum_{k=\tau}^{n} {n \choose k} \frac{1}{\mathsf{P}_{k}} \max_{0 \leq m \leq k} \left| \sum_{\nu=0}^{k} \mathsf{p}_{k-\nu} \mathsf{e}^{\mathsf{i}\nu t} \right| \\ &= O\left(\frac{1}{t}\right) \end{aligned}$$

This completes the proof of Lemma 3.2 Similarly,

Lemma 4.3

For $0 \le t \le \frac{1}{n}$

$\left|\widetilde{K}_{n}(t)\right| = O\left(\frac{1}{t}\right)$

Lemma 4.4

For
$$\frac{1}{n} \le t \le \pi$$
,
 $\left|\widetilde{K}_{n}(t)\right| = O\left(\frac{1}{t}\right)$

PROOF

Proof of Theorem 1:

Let, \tilde{s}_n denote the partial sum of conjugate Fourier series (1.2) then following Zygmund, we have

$$\tilde{s}_{n} - \tilde{f}(x) = \frac{1}{2\pi} \int_{0}^{\pi} \psi(t) \frac{\cos\left(n + \frac{1}{2}\right)t}{\sin\frac{t}{2}} dt$$

Therefore the (E, 1)(N, P_n) transform of $\tilde{s}_n(x)$ is given by

$$\begin{split} \tilde{\mathfrak{t}}_{n}^{\text{EN}} &- \tilde{\mathfrak{f}}(x) = \frac{1}{2^{n+1}\pi} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} {n \choose k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\} dt \\ &= \int_{0}^{\pi} \psi(t) \left| \widetilde{K}_{n}(t) \right| dt \end{split}$$

For $0 < \delta < \pi$, we have

$$\int_{0}^{\pi} \psi(t) \widetilde{K}_{n}(t) dt = \int_{0}^{1/n+1} \psi(t) \widetilde{K}_{n}(t) dt + \int_{1/n+1}^{\delta} \psi(t) \widetilde{K}_{n}(t) dt + \int_{\delta}^{\pi} \psi(t) \widetilde{K}_{n}(t) dt$$

= $I_{1} + I_{2} + I_{3}$ (say) (5.1)

Now, by applying (3.1), (3.2) and (4.1), we have

$$\begin{aligned} |I_{1}| &\leq \int_{0}^{1/n+1} |\psi(t)| |\widetilde{K}_{n}(t)| dt \\ &= O \int_{0}^{1/n+1} \frac{1}{t} |\psi(t)| dt \\ &= O(n+1) \int_{0}^{1/n+1} |\psi(t)| dt \\ &= O(n+1) \left[O \left\{ \frac{1}{(n+1)\alpha(n+1)C_{n+1}} \right\} \right] \\ &= O \left\{ \frac{1}{\log(n+1)} \right\} \\ &= O(1) , \quad \text{as } n \to \infty \end{aligned}$$
(5.2)

From condition (3.1), (3.2) and (4.2), we have

IJSRR, 8(2) April. – June., 2019

$$\begin{split} |I_2| &\leq \int_{1/n+1}^{\delta} |\psi(t)| |\widetilde{K}_n(t)| dt \\ &= O\left[\int_{1/n+1}^{\delta} |\psi(t)| \left(\frac{1}{t}\right) dt\right] \\ &= O\left[\left\{\frac{1}{t}\psi(t)\right\}_{1/n+1}^{\delta} + \int_{1/n+1}^{\delta} \frac{1}{t^2}\psi(t) dt\right] \\ &= O\left[o\left\{\frac{1}{\alpha\left(\frac{1}{t}\right)C_{\tau}}\right\}_{1/n+1}^{\delta} + \int_{1/n+1}^{\delta} o\left\{\frac{1}{t\alpha\left(\frac{1}{t}\right)C_{\tau}}\right\} dt\right] \\ &\text{Putting } \frac{1}{t} = \text{u in second term} \end{split}$$

 $= O\left[O\left\{\frac{1}{\alpha(n+1)C_{n+1}}\right\} + \int_{1/\delta}^{n+1} O\left\{\frac{1}{u\alpha(u)C_{u}}\right\} du\right]$ $= O\left\{\frac{1}{\log(n+1)}\right\} + O\left\{\frac{1}{\log(n+1)}\right\}$ $= O(1) + O(1), \quad \text{as } n \to \infty$ $= O(1), \quad \text{as } n \to \infty$ (5.3)

By Riemann-Lebesgue lemma & by regularity condition of the method of summability, we have

$$|I_{3}| \leq \int_{\delta}^{\pi} |\psi(t)| |\widetilde{K}_{n}(t)| dt$$

= o(1), as n $\rightarrow \infty$ (5.4)
Combining (5.1), (5.2), (5.3) and (5.4), we have

 $I_1 + I_2 + I_3 = 0(1)$

Hence we proved that

 $\mathfrak{t}_n^{(E,1)(N,P_n)}-\tilde{\mathfrak{f}}(x)$ = o(1) , as $n\to\infty$

This completes the proof of Theorem 1.

Proof of Theorem 2:

For $0 < \delta < \pi$,

$$\tilde{t}_{n}^{(E,1)(N,P_{n})} - \tilde{f}(x) = \int_{0}^{\pi} \psi(t) \widetilde{K}_{n}(t) dt$$

IJSRR, 8(2) April. – June., 2019

$$= \int_0^{1/n} \psi(t)\widetilde{K}_n(t)dt + \int_{1/n}^{\delta} \psi(t)\widetilde{K}_n(t)dt + \int_{\delta}^{\pi} \psi(t)\widetilde{K}_n(t)dt$$
$$= J_1 + J_2 + J_3 \quad (say) \tag{5.5}$$

On applying (3.3) and (4.3), we have

$$\begin{aligned} |J_1| &= \int_0^{1/n} |\psi(t)| |\widetilde{K}_n(t)| dt \\ &= O\left[\int_0^{1/n} \frac{1}{t} |\psi(t)| dt\right] \\ &= O(n) \left[\int_0^{1/n} |\psi(t)| dt\right] \\ &= O\left\{\frac{1}{\log(n)}\right\} \\ &= o(1) , \text{ as } n \to \infty \end{aligned}$$
(5.6)

From (3.3) and (4.4), we have

$$\begin{split} |J_2| &= \int_{1/n}^{\delta} |\psi(t)| |\widetilde{K}_n(t)| dt \\ &= O\left[\int_{1/n}^{\delta} \frac{1}{t} |\psi(t)| dt\right] \\ &= O\left[\left\{\frac{1}{t}\psi(t)\right\}_{1/n}^{\delta} + \int_{1/n}^{\delta} \frac{1}{t^2}\psi(t) dt\right] \\ &= O\left[o\left\{\frac{1}{\log\left(\frac{1}{t}\right)}\right\}_{1/n}^{\delta} + \int_{1/n}^{\delta} o\left\{\frac{1}{t\log\left(\frac{1}{t}\right)}\right\} dt\right] \\ &= o\left\{\frac{1}{\log(n)}\right\} + o(1)\left\{-\log\log\left(\frac{1}{t}\right)\right\}_{1/n}^{\delta} \\ &= o(1) + o(1), \quad \text{as } n \to \infty \\ &= o(1), \text{ as } n \to \infty \end{split}$$
(5.7)

Finally,

By using Riemann-Lebesgue theorem and regularity condition of summability, we have

(5.8)

$$|J_3| = \int_{\delta}^{\pi} |\psi(t)| |\widetilde{K}_n(t)| dt = o(1)$$
, as $n \to \infty$

Combining (5.5), (5.6), (5.7) and (5.8) we have $\mathfrak{t}_{n}^{(E,1)(N,P_{n})} - \tilde{f}(x) = o(1), \quad \text{as } n \to \infty$

This completes the proof of Theorem 2.

CONCLUSION

Several results concerning the product summability of Nörlund-Euler means have been reviewed with different criteria and conditions. In future, by applying more conditions we can rectify the errors and its application in the field of Fourier analysis.

REFERENCES

- 1. Mears FM. Some multiplication theorems for the Nörlund mean. Bull. Amer. Math. Soc.1935; 41: 875-880.
- 2. Lal S, Nigam HK. On almost (N, p, q) summability of Conjugate Fourier series. IJMMS. 2001; 25(6): 365-372.
- Lal S, Singh HP. The degree of approximation of Conjugate of almost Lipschitz functions by (N, p, q)(E, 1) means. Int. Math. Forum. 2010; 5: 1663-1671.
- Prasad K. On the (N, P_n)C₁ summability of a sequence of Fourier coefficients. Indian J. Pure. Appl. Math. 1981; 12(7): 874-881.
- 5. Sahney BN. On a Nörlund summability of Fourier series. Pacific Journal of Mathematics. 1963; 13(1): 251-262.
- Sinha KS, Shrivastava UK. The almost (E,q)(N,P_n) summability of Fourier series. Int. J. Math. Phy. Sci. Research. 2014; 2 (1): 17-20.
- 7. Hardy GH. Divergent Series. Oxford: 1949.
- Prabhakar M, Saxena K. On (E, 1)(N, P_n) Summability of Fourier Series. Int. Res. Jour. Pure Algebra. 2016; 6(1): 1-5.
- Zygmund A. Trigonometrical Series. Vol. I and II. Cambridge University Press; Warsaw; 1935.