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1.  INTRODUCTION 
 Quaternion symmetric and quaternion symmetric positive definite matrices have been 

extensively studied and there are good characterizations of these sets.  We wish to use the fact that in 

n n , the set of quaternion symmetric positive semidefinite matrices forms a cone with a very special 

structure:  the identity matrix is the central direction and there exist certain kinds of symmetries 

around it.  The position of each matrix in the cone depends strongly on its quaternion eigenvalues 

and consequently on its rank.  We exploit this special structure below. 

 First, we observe that, when the rank of a quaternion symmetric positive semidefinite matrix 

decreases, then its angle with the identity matrix increases.  In this sense,the rank one matrices are 

the farthest from the identity and all of them form a fixed angle with that matrix. 

 In the final section, the following bounds for the quaternion eigenvalues of any quaternion 

symmetric matrix4
0 1X X j are obtained.  If 1 2, ..... n    are the quaternion eigenvalues of  and we 

denote Frobenius norm by  . F  respectively,  we prove that  

   
1

22
20 1 0 1

0 1
1

s F

trace X X j trace X X jn X X j
n n n


        
   

 

for s , 1,2.....s n . 

 Finally, one more relation is established for quaternion symmetric positive semidefinite 

matrices1,2 and it concerns the number of quaternion eigenvalus above their mean.  We show that 

when the angle between any matrix and the identity increases, then the number of quaternion 

eigenvalues above the mean decreases in the following manner have been proved:  at most 1t 

quaternion eigenvalues6 are above the mean if   1
0 1 0 1 tFtrace X X j X X j p    , where tp is 

defined by 
2

1 211( ) ( 1)( )t
tp t 




      
 

 

External examples of this relation are the identity, withall its quaternion eigenvalues3 at the mean, 

and the rank one matrix, with only one quaternion eigenvalue above the mean.  This relation is valid 

not only for the mean but for any number in the interval  0 10, ( )trace X X j : then similar results can 

be obtained. 

2.  NOTATION AND FIRST RESULTS The set of quaternion hermitian matrices of 

 order n  isdenote by n n , and by n the matrices in n n that are quaternion positive 

semidefinite4.  Now for 1,2,.....t n , we can define the following subsets: 
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 0 1 / ( )t nX X j rank X t     and 

 0 1 / ( )t nX X j rank X t      

[where 0 1 ,X X X j  0 1 0 1( ) ( ) ( ) ( )rank X rank X X j rank X rank X j    ]We will use in n nH  the 

set of quarternionhermitiansquare matrices of order n , the Frobenius inner product defined by  

 0 1 0 1, FX X j Y Y j   =  ( )CTtrace X Y  

= 0 1 0 1( )( )CT CTtrace X X j Y Y j     

= 0 0 1 1( ) ( )CT CTtrace X Y trace X Y j
 
 

This inner product allows us to define the cosine of the angle between two quaternion hermitian 

matrices in n nH  by 

 0 1 0 1cos ,X X j Y Y j  = 0 1 0 1

0 1 0 1

, F

F F

X X j Y X j
X X j Y Y j

 

 
 

 For the 1-norm and 2-norm in n nH  we will use the usual notation.  It is well known that n is 

a cone and its interior is the set of quaternion hermitian positive definite matrices.  We show the 

location of the sets t , t n in n with respect to the identity matrix, which will be noted by I .  

The following simple result can be had. 

Lemma 2.1 

 If 0 1 tX X X j    , then  
1

2
0 1 0 1/ ,

F
trace X X j X X j t    

Proof 

 Since 0 1 tX X X j    , 0 1X X j  has t , positive eigenvalues 1 2, ,..... t   . We denote by 

,the vector with those components. We need to compute the cosine of the angle formed between 

0 1X X j and I as. 

 0 1cos ,X X j I = 0 1

0 1

, F

F F

X X j I
X X j I




=  0 1

1
2

0 1 F

trace X X j

X X j n




 

Regarding the Frobenius norm 2

1 1

n n

n ijF
i j

I n
 

  where ij  is the Kronecker symbol, 1ij   

if i j  and 0ij  if i j ] 

But using the facts 0 1 1( )trace X   , 1 2 1( )trace X j  , 0 1 2X  ,and  1 2 2X  the inequality 

between 1-norm and 2-norm, we have  
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0 1
1

2
0 1

( )

F

trace X X j

X X j n






   0 1
1

2
0 1F F

trace X trace X j

X X j n




 

  1 21 1
1

2
1 22 2

n

 

 




 

0 1
1

2
0 1

( )

F

trace X X j

X X j n




 

1
2

1
2

k

n
  

Which proves the lemma. 

Remark 2.2 

 We want to make some observations: First, the lemma is valid for 0 1 tX X X j   ; second, 

the contra positive statement gives us a lower bound for the rank of  0 1X X j ; and finally, if 

0 1 tX X j   has all equal quaternion eigenvalues, then equality holds.  Any element in t
 can be 

written as  

   0 1 0 1
1

t
CT

s s
s

a a j a a j


  =    0( ) 0( ) 1( ) 1( )
1

t
CT CT

s s s s
s

a a a a j


  

for some s n na  , 1,2,.....s t  (see [1,2]).  In particular, any element in 1 takes the form

0 0 1 1
T Td d d d j for 0 1 n nd d j   .  We are interested now in the projection of any element of 

 0 1 nD D j on the direction generated by elements of 1 . 

Lemma 2.3 

 Let 0 0 1 1
T Td d d d j be an element of 1 .  The projection of  0 1 0 1 nX X j D D j   on the 

0 0 1 1
T Td d d d j is 

0 0 0 1 1 1 0 0 1 1

0 0 1 1 0 0 1 1

.
T T T T

T T T T

d X d d X d j d d d d j
d d d d j d d d d j

 
 

 

Proof 
The desired projection is given by  

  0 0 1 1
0 1 0 1 0 0 1 1

0 0 1 1

cos , .
T T

T T
T TF

d d d d jX X j X X j d d d d j
d d d d j


  


 

we can compute now the coefficient of the quaternion unitary matrix 0 0 1 1

0 0 1 1

T T

T T

d d d d j
d d d d j




(quaternion 

unitary matrix means in this article a matrix with Frobenius norm equal to one): 
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  0 0 1 1
0 1 0 1 0 0 1 1

0 0 1 1

cos , .
T T

T T
T TF

d d d d jX X j X X j d d d d j
d d d d j


  


 

=
0 1 0 0 1 1

0 1
0 1 0 0 1 1

, T T

F
F T T

F F

X X j d d d d j
X X j

X X j d d d d j

 


 

,
cos( , ) F

F F

A B
A B

A B
 

 
  
  

=
  0 1 0 0 1 1

0 0 1 1

CT CT T T

T T

F

trace X X j d d d d j

d d d d j

   


 

  0 1 0 0 1 1 0 1 0 0 1 1, T T CT CT T T

F
X X j d d d d j trace X X j d d d d j          

=  0 0 0 1 1 1

0 0 1 1

T T

T T

d X d d X d j
d d d d j




 

Note 2.4 
 It is very important to observe that the coefficient computed is the Raylaigh quotient. 

3.  MAIN RESULTS We consider now the following set:

   0 1 0 11 2 1 2

1 1, cos ,n nM M j M M j
n n

 
           
    .  For 2n  is easy to prove that

1 1
2

1,
n


 

   
 

 but for 2n  we get 1 1
2

1,
n


 

   
 

.   

Using 1
2

1,
n


 
 
 

allows us to get lower and upper bounds for the quaternion eigenvalues that 

are invariant under similar quaternion orthogonal transformations.  Using this invariance then allows 

us to write the trace and its Frobenius norm in terms of quaternion eigenvalues.  Thus it is easy to see 

that 

 
1

22
2 0 1

0 1
1
2 2F

trace X X j
X X j

  
   

    
 

is the standard derivation of the quaternion eigenvalues s , 1,2,.....s n this can be computed even if 

the quaternion eigenvalues are unknown.  We denote the standard deviation by ( )d  . 

Theorem 3.1 

 Let 1 2, ...... n   be the quaternion eigenvalues of  0 1 0 1 nX X j D D j   .  Then each s , 

1,2,.....s n satisfies 
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 0 1
s

trace X X j
n




 
 

1
22

2 0 1
0 1

1
2F

trace X X jn X X j
n

  
   

    
 

Proof 

If n is the maximum quaternion eigenvalues of 0 1X X j , then by the properties of the 

Rayleigh quotient we have  

 n  =  
0 1

0 0 0 1 1 1

( )
0 0 1 1

max
n n

T T

T Td d j

d X d d X d j
d d d d j 




 

 =  
0 1

0 1 0 1 0 0 1 1( )
max cos ,

n n

T T
Fd d j

X X j X X j d d d d j
 

    

 =     
0 1 1

2

0 1 0 1 0 1
1( ) ,

max cos ,
F

M M j I
n

X X j X X j M M j

 
  
 
 

    

where the last inequality is consequence of the inclusion  1
2

1
1 ,

n
I  . 

 Our goal is to compute  
0 1 1

2

0 1 0 1 0 1
1( ) ,

max cos ,
F

M M j I
n

X X j X X j M M j

 
  
 
 

   .  In order to do 

that, we transform our function as follows: 

 0 1 0 1 0 1cos ,FX X j X X j M M j    =  0 1 0 1
0 1

0 1 0 1

, F
F

F F

X X j M M j
X X j

X X j M M j
 


 

 

  =  0 1 0 1

0 1

, F

F

X X j M M j
M M j

 


 

 We need now an appropriate parametrizationof the vectors of 1
2

1,
n


 
 
 

.  We propose the 

following expression for 0 1 1
2

1,M M j
n


 

   
 

: 

0 1M M j =  1 1
2 2

0 1 0 1
1 2

0 10 1

1 CT CT

CT CT
FF

X X j Y Y jI
Y Y jn n X X j

 
 

 


 

In this expression 0 1
CT CTX X j is the projection of 0 1X X j on the subspace orthogonal to I

and 0 1Y Y j is orthogonal to I and 0 1X X j .  In order to get 0 1M M j quaternion unitary, we 

require that 2 2 1
1 2

n
n    .  Now, we are ready to compute 
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0 1 0 1

0 1

,

F

X X j M M j
M M j
 


  =  

1 1
2 2

0 1 0 1 0 1
1 0 1 2 0 1

0 10 1

,1 , ,
CT CT

F
CT CT

F FF F

X X j I X X j Y Y jX X j X X j
Y Y jn n X X j

 
  

   


 

=     
1

22
2 0 1

0 1 1 0 1
1

F

trace X X j
trace X X j X X j

n n

 

    
 
 

  

and is easy to see that 

 
0 1 1

2

0 1 0 1 0 1
1( ) ,

max cos ,
F

M M j I
n

X X j X X j M M j

 
  
 
 

   =
0 1 1

2

0 1

0 1 0 1
1( ) ,

1

max ,

F

F
M M j I

n
M M j

X X j M M j

 
  
 
 

 

   

=    
1

21
2 2

2 0 1
0 1 0 1

1 1
F

trace X X jntrace X X j X X j
n n n

            
 

Because  
1

22
2 0 1

0 1 0F

trace X X j
X X j

n

 
   

 
 

  

 The lower bound can be computed in a very similar way. 

Remark 3.2 
 For 2n  , these bounds are exactly the quaternion eigenvalues. 

Remark 3.3 

 In the inequality of the above theorem, equality holds for 0 1 1X X j  , or when 0 1X X j is 

a multiple of the identity matrix. 

 Another interesting thing to know is if there exist quaternion eigenvalues in the intervals 

            
1

20 1 0 1
0 1 0 11 ,

trace X X j trace X X j
n d d j d d j

n n
 

  
     

 
and 

            
1

20 1 0 1
0 1 0 1, 1

trace X X j trace X X j
d d j n d d j

n n
 

  
     

 
 

the following result concerns this quaternion. 

Remark 3.4 
 At least one of the maximum and the minimum quaternion eigenvalue is in one of the 

intervals mentioned just above. 
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Proof 
 It is a consequence of the fact that the standard deviation is less than or equal to the absolute 

value of the maximum deviation. 

Remark 3.5 

 Another question that we want to answer for matrices in n ,is, how are the eigenvalues 

located with respect to their mean?  There exists a relation between the angle that the matrix

0 1X X j ,forms with the identity matrix and the number of quaternion eigenvalues above the mean.  

The following result establishes this relation.  We need to introduce some special values tp for

1,2......t n  defined by   
2

21 1
2

1 1t
n tp t

n
      

 
 

Theorem 3.6 

 If 0 1 nX X j  has only quaternion eigenvalues greater or equal to  0 1trace X X j
n


then

  1
20 1

0 1
t

F

trace X X j
p

X X j





. 

Proof  

 We can assume that  0 1 1trace X X j  , because this does not affect either the angle 

between 0 1X X j and I or the order relation between quaternion eigenvalues and its means.  We 

recall that 

   
1

2

0 1
0 1

0 1 2

cos ,
trace X X j

X X j I
j n 


 


. 

Then it is only necessary to prove that 1
2

0 1

1
tp

j 



or  

2
1

0( ) 1( )
1

n

t s s
s

p j 



   

But this is clear, because 1
tp is the optimum for the problem  

   
2

1 2 0( ) 1( )
1

max , .....
n

n s s
s

g j    


   

Such that   0( ) 1( )
1

1
n

s s
s

j 


   

  1
0 1 nn sj 


  0,1,2,......( 1)s s   

 0 1 0sj   0,1,2,......s n  

An easy proof of the last statement can be given using the Kuhn-Tucker conditions. 
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Note 3.7 
 The useful version of this result is the following. 

Remark 3.8 

 Let 0 1 nX X j  .  If    1
20 1

0 1
t

trace X X j
p

X X j





then at most 1t  .quaternion eigenvalues are 

above  0 1trace X X j
n


. 

Remark 3.9 

 If 0 1 nX X j  and   1
20 1

0 1
t

F

trace X X j
p

X X j





, then 0 1X X j  has only one quaternion 

eigenvalue above  0 1trace X X j
n


, and it belongs to the interval 

    1
20 1 0 1

0 1 0 1 0 1 0 1( )( ), ( 1) ( )( )
trace X X j trace X X j

d d j j n d d j j
n n

   
  

       
 

 

 Finally we want to note that similar results to Theorem 3.7 and remark 3.8 can be obtained 

with identical proofs for every  in the interval 0 10, ( )trace X X j .  The values tp are now defined 

by  
2

1 211( ) ( 1)( )t
tp t 




      
 

 

 All results formulated forsymmetric positive semidefinite matrices have corresponding ones 

for quaternion symmetric negative semidefinite matrices. 
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