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ABSTRACT 

We present a quantitative study of the scaling function which describes the effect of 

confinement in a cylindrical geometry with radius L on critical properties. The experimental results 

for the thermal resistivity    LPtLPt ,,/1,,    near  PT  of liquid 4He confined in cylinders of 

two different radii and at various pressures as a function of the reduced temperature 1/  TTt

have been analyzed. The use of two confinement sizes allows us to directly test finite-size scaling, 

while the use of different pressures for one size provides a test of universality. For bulk helium 

 ,, Pt  depends strongly on pressure, so that a comparison of an appropriate scaling function for 

 LPt ,,  at different pressures provides a sensitive test of universality. These two aspects were 

tested in separate experiments: measurements as a function of L  were taken at SVP, and 

measurements as a function of were taken at a single confinement size L = 1.0µm. 
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INTRODUCTION 
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The modern theory of critical phenomena1 predicts that continuous phase transitions belong 

to distinct universality classes which are determined by such general properties of the system as the 

number of degrees of freedom of the order parameter and the spatial dimensionality. Within a given 

class, exponents and amplitude ratios are identical (i.e. universal) for all members and independent 

of irrelevant variables. An example of an irrelevant variable is the pressure P  of a liquid helium 

sample at which measurements near the superfluid transition temperature T  are made. Within a 

given universality class, the dependence of many properties upon certain parameters can be 

represented by scaling functions which are the same for all systems.  

Theoretical predictions for λ are still quite limited. Monte Carlo calculations give the shape of 

a scaling function, but only to within a multiplicative factor2. Within its precision this shape agrees 

well with the measurements3. Very recently, a one-loop renormalization group (RG) calculation of 

 LPt ,,  for 0t  and at SVP was carried out by Topler and Dohm4, but at present there are no such 

calculations for 0t  and for higher pressures. Thus, in order to provide a broader framework for the 

analysis of data, we use a phenomenological approach. We assume that the temperature and size 

dependence of   are separable and that the size dependence is a function only of /L  where 

  t0 is the correlation length:      ./~,,,,  LFPtLPt   Since  ,, Pt  goes to zero as t 

does while  LPt ,, remains finite, F  diverges at .0t  To avoid this difficulty, we redefine the 

scaling function as     FLXF x ~/ /  which avoids the divergence at .0t Consistent with 

experiment5, we have written   for bulk helium as a power law   xtPt 0,,   with effective 

exponents  Px  and amplitudes  .0 P  We now have 
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Note that 0t  is the temperature at which the correlation length grows to the size of the 

container, i.e. .L The correlation length has pressure-dependent amplitude  P0  and a universal 

exponent . The values of 0 , 0 , and x  are known from bulk measurements1 and are summarized 

in                  Table 1. 

The two different thermal conductivity cells were used. One (Cell I) was described in detail 

elsewhere3. It was used for measurements of the resistivity as function of P  at 0.1L µm. It 
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consisted of two cylindrical metal plates made of OFHC (Oxygen-Free High-Conductivity) copper 

separated by a stainless steel sidewall. A glass micro channel plate (MCP) was epoxied to the inside 

of the sidewall, so that when assembled the liquid helium between the plates would be confined to 

the channels with little extraneous liquid between the endplates and the glass. A small bulk thermal 

conductivity cell, called a “lambda device”, was attached to the bottom (hot) copper plate for the 

determination of T  in bulk helium. The bottom of the lambda device was 1.25 cm below that of the 

confinement cell, and as a result the value of T  had to be corrected for the hydrostatic pressure 

difference between the bottom of the lambda device and the middle of the MCP6,7. Since the lambda 

device was attached to the bottom plate, it could only be used before and after a data acquisition 

sequence because the heat applied to it necessarily flowed through the confining cell. The cell was 

filled through an overflow volume located on the top (cold) copper plate. 

Cell II, used for measurements of the resistivity as a function of L  at SVP, was designed for 

use with micro channel plates which were surrounded by a solid glass ring. Whereas the MCP in Cell 

I was epoxied into a stainless steel sidewall which in turn was sealed to the copper endplates with 

indium gaskets, the glass ring in the second type was directly sealed to the copper using indium. A 

stainless steel sidewall was used as a spacer, but its length was chosen so that the different thermal 

expansion coefficients of the copper endplates and the stainless steel compensated each other. As a 

result the force applied to the micro channel plate was constant. The cryogenic apparatus used with 

this cell design could accommodate three thermal conductivity cells, all of which were suspended 

from a common temperature-regulated platform. One of these cells was a bulk conductivity cell 

constructed with an open glass ring. It served to locate T  of the bulk fluid. The vertical centers of 

the cells were nearly the same, so that the gravity correction mentioned for the first cell was greatly 

reduced. The three cells were independent of each other, so that the bulk thermal conductivity could 

be measured at the same time as the thermal conductivity for two different confinement sizes. The 

fill line entered the bottom of the cell, and the portion of the fill line located in the bottom plate was 

packed with 0.05 µm Alumina powder to suppress the superfluid transition. Thus the liquid helium 

contained in the bottom plate was always normal. The fill line was connected to an overflow volume 

on the shield stage, which was maintained a few mK above T . 

Saturated vapor pressure was maintained in both sets of experiments by partially filling the 

overflow volumes. Pressures other than SVP were reached in Cell I using ahot volume8, a separate 

thermal stage filled with fluid whose temperature was controlled to regulate the pressure in the 

thermal conductivity cell. The pressure was measured using a capacitative strain gage9mounted on 
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the top of the cell. The fluid in the cell and the hot volume was isolated from the rest of the cryostat 

by a normally-closed low-temperature valve. 

THEORETICAL ANALYSIS 
The resistivity   was computed from the temperature difference T  which was measured 

across the fluid layer when a power Q  was applied to the bottom plate of a cell: 
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 where A  is the cross-sectional area of the fluid, d  is the spacing between 

the plates, WC  is the parallel conductance of the stainless steel sidewall and the glass of the MCP, 

and bR  is the boundary resistance between the copper end-plates and the fluid. The boundary 

resistance bR  was measured far below T , where the resistance of the fluid layer can be neglected. 

The size of the correction is relatively small, and its temperature dependence near T  was neglected.  

The parameters dA /  and WC    were obtained by fitting the measured  LPt ,, to the known 

 ,, Pt several mK above T  where the effects of confinement are negligible. For Cell I, the 

pressures at which measurements were made were chosen to match those for which prior 

measurements for bulk helium were available1; the value 386.0/ Ad  so obtained was found to be 

independent of pressure and agreed with the value 0.39 previously determined for this cell3. The 0.5 

and 1 µm data, taken with Cell II, yielded 0781.0/ Ad  and 0.0605, respectively. All values for 

Ad /  are in good agreement with values from gas flow-impedance measurements on and electron 

micrographs of the micro channel plates. The values for WC for each size and pressure are shown in 

Table I (for P = 11.25 bar, there were no bulk conductivity data, and WC  was obtained by 

interpolation between other pressures). Each conductivity data point was assigned to the mean 

temperature ,
2
TTT top   and a corresponding curvature correction1 was applied to correct for the 

use of a finite Q  and .T  

RESULTS AND DISCUSSIONS 
The resistivity at SVP is plotted versus t  in Fig. 1 for two different values of L . The data 

show the effect of confinement, with the smallest size showing the greatest rounding of the transition 

and the greatest increase of    .0t  

The scaling variable F  (Eq. 1) is plotted versus X  (Eq. 2) for the two sizes in Fig. 2. Except 

perhaps for 2X , the data collapse onto a single curve, thus supporting the concept of finite-size 
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scaling. It is difficult to tell whether the small difference in F  between the two data sets below 

2X  is significant or due to unknown systematic experimental errors. 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Thermal resistivity versus reduced temperature at SVP for L = 0.5µm (open circles) and 1.0µm 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2:F versus X at SVP for L = 0.5µm  (open circles) and 1.0µm. 
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Figure 3shows  LPt ,, as a function of t for six different values of P and    L = 1.0µm. The 

resistivity does not drop to zero below t = 0, as is the case for the bulk fluid1. The value of 

 LPt ,,0  varies by nearly a factor of three for the pressures used. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3:Thermal resistivity versus reduced temperature for L=1.0µm at SVP 

 
In Fig.4the function F is plotted versus X for six different pressures. Within our resolution the 

data collapse on the same curve, suggesting that a single scaling function describes all six pressures. 

The collapse occurs despite the large variation of  at constant t.  

 

 

 

 

 

 

 

 

Figure4: Scaling function F versus scaling variable X for L = 1.0µm at SVP (open circles) 
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Figure 5:  The thermal conductivity below T on a logarithmic scale versus reduced temperature on a linear scale 
for L = 1.0µm at SVP (open circles). 

 
The thermal conductivity   is plotted on a logarithmic scale versus t on a linear scale in Fig. 

5for temperatures below  PT . It is consistent with an exponential growth below  PT ) as noted 

previously3. The amplitudes and arguments of the exponential are approximately the same for all 

pressures. These results suggest that  , rather than the scaling function F , is independent of 

pressure in this temperature region, and that universality breaks down below  PT . 

Aside from testing scaling and universality, an important issue is to what extent detailed 

theoretical calculations can reproduce the conductivity. As discussed above, the theoretical 

information is limited. Monte Carlo calculations, which give the shape of the scaling function quite 

well, involve as yet undetermined parameters. However, the recent renormalization group 

calculations have yielded results for   at SVP4.  
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Figure6: Thermal conductivity  0t  vs 1L  on logarithmic scales. 

In Fig.6 we show data for  0t  as a function of 1L  on logarithmic scales. The 

phenomenological scaling function Eq. (1) predicts    /0 xLt  ) which, for /x = 0.656 is 

shown by the dashed straight line. The RG prediction is given by the solid line (note that the 

horizontal axis differs from the original; here, L  is the radius of the channel, not the diameter). 

Although it comes modestly close to the data points, it does not follow a pure power law, as 

manifested by curvature of the solid line in the figure. Near 1L  the effective exponent (i.e. the 

local slope of the line in Fig. 6 is close to 0.56, which differs significantly from the prediction based 

on Eq. 1. Although the data points tend to favor the larger exponent /x , they do not cover a 

sufficient range of L  to be decisive. Future plans call for the measurement of the resistivity at larger 

L , with the largest (50µm) to be flown on the International Space Station, extending the range 

covered to two decades in L 10. 
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TABLE 1 Values of the parallel conductance WC  and scaling function F at X=0versusP 

CONCLUSION 

In conclusion, we present quantitative study of the thermal resistivity  LPt ,,  near the superfluid 

transition of He-4 at saturated vapor pressure and confined in cylindrical geometries with radii 

5.0L  and 1.0 μm  1/  TTt . For 0.1L μm, measurements at six pressures P  are presented. 

At and above T  the data are consistent with a universal scaling function valid for all .P  
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