

Research article Available o

Available online www.ijsrr.org

ISSN: 2279-0543

International Journal of Scientific Research and Reviews

Influence of Bi-doping on the structure and efficiency of TiO₂ photoanodes

Mohamed H. Badr^{1*}, Ahmed A. El-Hamalawy², M. M. El-Kholy³ and Alshimaa Ali⁴

^{1,2,3,4} Menoufia University, Faculty of Science, Physics Department, Shebin El-Kom 32511, Egypt.

ABSTRACT

Bismuth-doped TiO_2 photoanodes of dye sensitized solar cells were synthesized by using powder bismuth oxide. The effect of bismuth doping on the crystallite size, strain lattice distortion and crystallinity of titanium oxide was investigated and its influence on the photovoltaic behavior of dye sensitized solar cells was studied. The variation in short-current density and open-circuit voltage with Bi-doping was explained in terms of changes in both electron-hole recombination and conduction band edge of titanium oxide, respectively. The prepared photoanodes were characterized by X-ray diffraction and energy dispersive X-ray analyses.

KEYWORDS: Bi-doping, crystal structure, DSSC, X-ray diffraction.

*Corresponding Author

Mohamed H. Badr

Menoufia University, Faculty of Science, Physics Department,

Shebin El-Kom 32511, Egypt.

Phone: 002-010-96296262

Email*: mhbadr0@hotmail.com

INTRODUCTION

It is expected that conventional solar cells will be replaced by Dye Sensitized Solar Cells (DSSCs) due to their low cost and simple manufacturing processes^{1,2}. Basically, a DSSC consists of photoanode (wide band gap semiconductor oxide(s) on transparent conducting glass), sensitizer, redox electrolyte and counter electrode. Considerable efforts have been devoted on all of these constituents to increase the overall efficiency of DSSC devices. Many studies focus on improving the performance of photoanodes have been published, see for example Refs. ^{3,6}. More than a few of these studies employed TiO₂ semiconductor because of its high efficiency, low cost, chemical inertness and photostability^{7,8}.

The electronic properties of TiO_2 can be modified by doping, either by replacing the Ti^{4+} cation or the O^{2-} anion⁹. There are different ways for entering the dopant into the TiO₂-lattice, e.g., mixing TiO₂ precursor solution with the dopant precursor and doping TiO₂ electrochemically by dissolving the dopant in the electrolyte solution¹⁰. Moreover, coating the photoanodes with another wide band gap semiconductors (such as Al₂O₃, ZnO, ZrO₂ and Nb₂O₅) to reduce charge recombination were reported¹¹⁻¹⁴. Doping TiO₂ photoanodes with Nb¹⁵ and Sb¹⁶ improved the performance of DSSCs due to enhancement of the short-circuit current density. Furthermore, metal doping of TiO_2 with Sn, Zn and W exhibited a positive shift in the conduction band edge that increased the electron injection efficiency and suppressed the carrier recombination^{15,17}. Nonmetals such as nitrogen, fluorine, carbon and sulfur also shifted the TiO₂ conduction band edge and decreased the concentration of oxygen vacancies, consequently, reduced the trapping at the defect sites¹⁸. Rare-earth-doping has been the subject of extensive research as well, e.g. Hafez et al.¹⁹ studied the effect of Eu and Sm doping on the efficiency of DSSCs. On the other hand, cocktail of bi-semiconductors such as TiO₂ and Fe₂O₃ were used in the photoanode material and resulted in increasing the performance of the DSSC due to the combined conduction bands²⁰. Moreover, photoanodes based on bismuth oxide with β -Bi₂O₃ morphology prepared by chemical bath deposition method was reported²¹. The DSSC efficiency was enhanced by suppressing charge recombination when another ZnO layer was applied. Bismuth-TiO2 photoanodes were synthesized mostly via sol-gel method, see for example Refs.^{22, 23}.

In this work, we employed powder bismuth oxide via a simple mechanochemical route to dope TiO₂ photoanodes as $(Bi_2O_3)_x$ - $(TiO_2)_{1-x}$ with x=0.0, 0.10 and 0.15. To the extent of our knowledge, there is no reported work on doping titanium oxide with powder bismuth oxide. The employed TiO₂ was prepared as nanoparticles and the used Bi_2O_3 has the most stable monoclinic α -phase²⁴. The crystal structure of photoanodes with different doping rations was investigated by

XRD and EDX. Also, the Bi-doping influence on the photovoltaic efficiency of DSSC devices was studied.

MATERIALS AND METHODS

Materials

Chemical materials of titanium dioxide (TiO₂: BHD, 98.0%), Bismuth (III) oxide (Bi₂O₃: Loba Chemie ,99%), acetylacetone (CH₃.CO.CH₂.CO.CH₃: Loba Chemie, 98.0%), triton X-100 (C₃₄H₆₂O₁₁: El-goumhouria), Hydrochloric acid (HCl: Elnaser pharm. chem., 30.0-34.0%), Hydrogen peroxide (H₂O₂: PubChem, 50.0%), amonia solution (NH₃: Elnaser pharm. chem., 33.0%), titanium tetrachloride (TiCl₄: Loba Chemie, 99.5%), hydrogen hexachloroplatinate (IV) solution (H₂PtCl₆: Sigma Aldrich), absolute ethanol (C₂H₅OH: Honeywell), pure acetone (CH₃COCH₃: Elnaser pharm. chem.), isopropyle-alcohol ((CH₃)₂CHOH: Elnaser pharm. chem.), ethylene glycol (C₂H₆O₂: S. D. Fine-Chem Ltd.), iodine resublimed (I₂: Elnaser pharm. chem.), potassium iodide (KI: Elnaser pharm. chem., 99.5%), N719 dye (Di-tetrabutylammonium cisbis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II): Dyesol) were used. Also, Fluorine-doped SnO₂ (FTO: 2.2-mm thick, 14Ω/sq., Pilkington) was utilized as our transparent conducting oxide (TCO) glass.

Preparation of TiO₂ nanoparticles

25 gm of raw TiO₂ was added to a solution of 25 ml of HCl, 50 ml of H₂O, 12.5 ml of H₂O₂ and 6.25 ml of NH₃ and stirred for 17 h to get a white suspension. Then, the suspension was washed and precipitated by repeated cycles of using distilled water and centrifuge. Lastly, the formed precipitate was dried at 70 °C for 21 h to get TiO₂ nanoparticles.

Preparation of undoped and Bi-doped TiO₂ pastes

A white solution was made by adding 10 ml of distilled water to 2 ml of TiCl₄ in an ice bath and kept under stirring until it became colorless. Then, 3 gm of prepared TiO₂ nanoparticles was added to another beaker with 0.05 ml of triton X-100, 0.1 ml of acetylacetone and 3 ml of distilled water. Lastly, 1.0 ml of the prepared colorless solution was added and the final solution was kept under continuous stirring for 24 h to obtain the TiO₂ paste. To prepare $(Bi_2O_3)_x$ - $(TiO_2)_{1-x}$ paste with x= 0.10 and 0.15, bismuth oxide powder was mixed with the previously prepared TiO₂ nanopowder and rigorously ground to facilitate mechanochemical reaction to take place, then the mixed powder followed the same procedure mentioned above for the preparation of TiO₂ paste.

Preparation of electrolyte and Pt layer

To prepare the electrolyte, about 0.6 gm of I_2 was dissolved in 50 ml of ethylene glycol and kept under stirring for 2 h. Then, 4 gm of KI was added to the mixture under continuous stirring for another 2 h and the obtained solution was stored in tight and dark glass container. To prepare the Pt layer of the counter electrode, 20 ml of pure ethanol was added to a beaker containing 0.5 ml of H_2 -Hex-Pt (IV). The acquired solution was dispersed on the FTO substrates and gradually heated to $450 \,^{\circ}$ C for 30 minutes.

Preparation of film electrodes and DSSCs devices

The prepared paste was spread on the transparent conducting glass using doctor -blade technique and then sintered at 450 °C for 30 min. Subsequently, the film was soaked in ethanol solution of N-719 dye for 24 h at room temperature and then gently washed by ethanol. The DSSC devices were assembled and the electrolyte was introduced into the aperture by repeated addition of electrolyte drops (on a hole in the counter electrode) and air suction to ensure complete filling of the aperture.

Measurements and characterization

X-ray diffraction (XRD) of $(\text{TiO}_2)_{1-x}(\text{Bi}_2\text{O}_3)_x$ working electrodes was recorded by using TMR (APD 2000 Pro) diffractometer with Cu-K_{\alpha1} radiation ($\lambda = 1.54056$ Å) with 20 covering the range from 20° to 70° with an angular resolution of 0.03°. The elemental analysis was carried out by using EDX (Energy Dispersive X-ray analysis) unit attached to SEM model Quanta 250 FEG (Field Emission Gun). The J-V curves of DSSCs were measured by using current amplifier (Kiethley 427), multimeter (Aplab 1087) and data acquisition (DataQ: DI-158U). The DSSCs devices were irradiated with a homemade solar simulator with xenon lamp (35 W), halogen lamp (55 W) and equipped with IR and UV filters to irradiate a DSSC active area of 0.35 cm². The power density of the simulator was 55 mW/cm² (measured by using SPM-1116SD Lutron solar power meter) which corresponds to a solar power of about 19 mW for the working active area.

RESULTS AND DISCUSSION

X-ray diffraction (XRD) patterns of $(Bi_2O_3)_{x}$ - $(TiO_2)_{1-x}$ with x=0.00, 0.10 and 0.15 photoanodes and powder Bi_2O_3 were shown in Figure 1. Also, the standard diffraction patterns of SnO_2 and TiO_2 rutile and anatase phases were given²⁵. All charts were normalized and shifted for clarity purposes. The chart of the raw bismuth oxide powder was compared with standard charts and all given peaks matched the peak positions and relative intensities of standard monoclinc (α -

phase) Bi_2O_3 , as referenced in JCPDS 76-1730. All shown diffraction peaks of x= 0.0 photoanode represent pure anatase-TiO₂ phase, in addition to tin oxide (due to FTO: fluorine-doped tin oxide conducting layer) diffraction peaks. It is worth mention that, the small peak at 33.8° belongs to SnO₂ rather than the monoclinc Bi_2O_3 . Before we proceed with XRD discussion for Bi-doped samples, we recall that we applied mechanochemical route in preparing the samples. This method is

Fig. 1: XRD pattern spectra of $(Bi_2O_3)_x$ - $(TiO_2)_{1-x}$ photoanodes for x = 0.0, 0.10 and 0.15 and powder Bi_2O_3 . Standard diffraction patterns of SnO₂, rutile and anatase phases of TiO₂ were given.

superior to both liquid phase processes and solid state reaction as it gives finer particle sizes by using low cost raw materials and without the need to high sintering temperatures²⁶. Ohara et al.²⁷ prepared BiTiO₃ with particle size of 22 nm by using mechanochemical procedure by ball-milling TiO₂ and BaCO₃ powders for 10 min. The reported XRD chart showed the absence of TiO₂ and BaCO₃ peaks and only BiTiO₃ peaks were observed. Now, the fact that our XRD chart for x= 0.0 represents pure TiO₂ (anatase phase) photoanode is confirmed by the absence of all Bi₂O₃ and rutile peaks; especially major diffractions. This argument is actually applied for Bi-doped photoanodes (x= 0.15 an x= 0.15) as well, where neither Bi₂O₃ nor rutile peaks were observed. The effects of Bi-doping were observed in the shift of peaks toward lower 20 angle and the gradual decrease of TiO₂ (200) diffraction intensities with the increase of x. Figure 2 showed the observed shift of the major TiO₂ (101) diffraction peak where it shifted from 20= 25.37° for undoped sample to 20= 25.19° for x= 0.15. This shift suggested an increase in the unit cell volume with increasing of x. Table 1 listed the calculated distortion, $\delta(a/c)\%$, of TiO₂ lattice for Bi-doped samples, whereas:

 $\delta(a/c) = (a/c) - (a_o/c_o)$

where (a/c) and (a_o/c_o) are the ratios between lattice parameters of Bi-doped and undoped samples, respectively. As observed, the calculated distortion increased with increasing of Bi-doping. On the other hand, we should take in account that there is no evidence of Bi₂O₃ phase in Bi-doped samples, as mentioned above, and the fact that the ionic radius of Bi³⁺ (0.103 nm) is greater than that of Ti⁴⁺ (0.061 nm)²⁸. These facts imply that Bi³⁺ ions substituted Ti⁴⁺ sites leading to an

Fig. 2: XRD major TiO_2 (101) diffraction peak of photoanodes for x = 0.0, 0.10 and 0.15.

increase in unit cell volume and absence of any Bi-based phases. Furthermore, the size of the crystallites (D) for different values of x was calculated by using Scherrer formula for the major (101) diffraction peak, as given in Table 1. The reported minute decrease in the average crystallite size with increasing of x could be attributed to growth suppression of similar TiO₂ crystallites due to Bi³⁺ ions doping. In other words, the mismatch between Bi³⁺-free unit cells and bigger cells with Bi³⁺ ions substituted Ti⁴⁺ sites decrease the possibility of crystallite growth, i.e. the more the Bi-doping the smaller the crystallite size. Moreover, let us study the effect of Bi-doping on the crystallinity of TiO₂ by considering the peak at about 2θ = 48.1° with (200) diffraction plane. As seen, this peak undoubtedly refers to TiO₂ (anatase phase) and its intensity decreased with the increasing of Bi-content, x. Therefore, Bi-doping resulted in a decrease in crystallinity of TiO₂ as confirmed by the observed gradual decrease in the intensity of this peak with increasing of x.

Energy-Dispersive X-ray (EDX) spectroscopy was employed to elementally analyze the composition of $(Bi_2O_3)_x$ - $(TiO_2)_{1-x}$ photoanodes. Figure 3 showed peaks corresponding to titanium, bismuth, oxygen and carbon indicating the absence of impurities in the prepared photoanodes. The presence of carbon is due to coating of samples with such conducting element. The calculated

content of bismuth in Bi-doped samples were tabulated in Table 1 and agrees fairly well with the starting stoichiometry, x, of $(Bi_2O_3)_x$ - $(TiO_2)_{1-x}$ photoanodes.

Х	D (nm)	a (Å)	c (Å)	δ (%)	x (EDX)
0.0	33	3.7739	9.5069	0	0.0
0.10	31	3.7794	9.4996	0.0879	0.09
0.15	30	3.8019	9.5505	0.1112	0.14

Table No. 1: "Crystallite size (D), lattice parameters, lattice distortion and EDX analysis of photoanodes"

Fig. 3: SEM-EDX analysis of $(TiO_2)_{1-x}$ - $(Bi_2O_3)_x$ photoanodes for (a) x = 0.0, (b) x = 0.10 and (c) x = 0.15.

The photocurrent density-voltage curves (J-V) of DSSCs with different Bi-doping concentrations of TiO_2 photoanodes are shown in Figure. 4. The photovoltaic parameters were calculated and tabulated in Table 2. The values of the fill factor (*FF*) for DSSCs with different concentrations of the dopant were calculated and indicated in Table 1. This parameter is a measure of the ideality of a solar cell and is given as:

 $FF = J_{max} V_{max} / J_{sc} V_{oc}$

where J_{max} and V_{max} are the current density and voltage corresponding to the maximum output power (P_{max}) of the P-V curves and given in Table 2. As observed, both short-circuit current density (J_{sc}) and open-circuit voltage (V_{oc}) were decreased with increasing of Bi-doping, x.

Fig. 4: Current density-voltage curves of $(Bi_2O_3)_x$ -(TiO₂)_{1-x} DSSCs for x= 0.0, 0.10 and, 0.15.

x	V _{oc} (V)	$J_{\rm sc}$ (mA/cm ²)	P _{max} (mW)	FF (%)	η
0.00	0.62	1.75	0.236	62.3	1.23
0.10	0.56	0.84	0.067	40.6	0.35
0.15	0.51	0.74	0.057	43.0	0.30

Table No. 2: "Parameters of DSSCs with (Bi₂O₃) x-(TiO₂)_{1-x} photoanodes for x= 0.0, 0.10 and 0.15"

Consequently, the light-to-electrical energy conversion efficiency (η) of doped DSSC devices is lower than that of undoped cells, see Table 1. The efficiency (η) was calculated according to the following equation:

 $\eta = P_{\text{max}} / P_{\text{in}} = J_{sc} V_{oc} FF / P_{\text{in}}$

where P_{in} is the input power of the incident light on the active area of the cell. The observed decrease in J_{sc} with Bi-doping could be attributed to reduction in TiO₂ crystallinity, as discussed above. This decrease in crystallinity of anatase-TiO₂ phase causes an increase in electron-hole recombination due to reduction in the speed of electrons²². Therefore, the observed gradual decrease in current density with increasing of x (Fig. 4) could be attributed to loss of photogenerated electrons by electron-hole recombination processes. To clarify the reduction in V_{oc} with Bi-doping (Fig. 4), let us recall that the measured V_{oc} is the difference between two potentials, namely, the Nernstian potential of the electrolyte and the quasi-Fermi level of TiO₂ ²⁹. Since conduction bands of TiO₂ and Bi₂O₃ with respect to the absolute vacuum scale are -4.21 eV and -4.83 eV ³⁰, respectively, then the former conduction band is higher than the later. Moreover, the substitution of Ti⁴⁺ by Bi³⁺ is expected to shift-down the quasi-Fermi level of TiO₂. Consequently,

the effect of increasing Bi-doping of TiO_2 photoanodes is expected to gradually shift-down its conduction band edge and accordingly V_{oc} decreases.

CONCLUSION

We employed powder bismuth oxide to prepare $(Bi_2O_3)_x$ - $(TiO_2)_{1-x}$ photoanodes with x= 0.0, 0.10 and 0.15. XRD analysis showed that the prepared titanium oxide nanoparticles have a size of 33 nm with a pure anatase phase. Also, Bi-doping caused distortion in TiO₂ lattice and a reduction in both crystallite size and crystallinity as Bi³⁺ ions substituted Ti⁴⁺. The photocurrent density-voltage curves of DSSCs revealed that both short-circuit current density and open-circuit voltage were decreased with increasing of x. The decrease in current density was attributed to an increase in electron-hole recombination associated with the observed reduction in TiO₂ crystallinity. Finally, the observed decrease in open-circuit voltage with increasing Bi-doping was explained in terms of a shift-down of the conduction band edge of titanium oxide.

REFERENCES

- Oregan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. Nature 1991; 353: 737–40.
- Chiba Y, Islam A, Watanabe Y et al. Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Jpn. J. Appl. Phys. 2006; 45: L638-40.
- 3. Tahcan Z, Zaban A, Ruhle S. Dye-sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing. Sol. Energ. Mat. Sol. Cells. 2010; 94: 317-22.
- Wang DA, Yu B, F. Zhou, Wang CW, Liu WM. Synthesis and characterization of anatase TiO₂ nanotubes and their use in dye-sensitized solar cells. Mater. Chem. Phys. 2009; 113: 602-06.
- Pan K, Zhang QL, Liu ZY et al. The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods. Thin Solid Films. 2007; 515: 4085-91.
- Schlichthorl G, Huang SY. Sprague J, Frank AJ. Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO₂ Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy. J. Phys. Chem. B. 1997; 101: 8141-55.
- Park NG, Lagemaat J, Frank AJ. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO₂ Solar Cells. J. Phys. Chem. B. 2000; 104: 8989–94.
- Im JS, Yun J, Lee SK, Lee Y-S. Effects of multi-element dopants of TiO₂ for high performance in dye-sensitized solar cells. J. Alloy Compd. 2012; 513: 573-79.

- Hoye RLZ, Musselman KP, MacManus-Driscoll JL. Research Update: Doping ZnO and TiO₂ for solar cells. APL Mater. 2013; 1: 060701-11.
- Roose B, Pathak S, Steiner U. Doping of TiO₂ for sensitized solar cells. Chem. Soc. Rev. 2015; 44: 8326-49.
- Prasittichai C, Hupp JT. Surface Modification of SnO₂ Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al₂O₃ Atomic Layer Deposition. J. Phys. Chem. Lett. 2010; 1: 1611-15.
- Seo HO, Park SY, Shim WH, Kim KD et al. Ultrathin TiO₂ Films on ZnO Electron-Collecting Layers of Inverted Organic Solar Cell. J. Phys. Chem. C. 2011; 115: 21517-20.
- Li TC, Goes MS, Fabregat-Santiago F et al. Surface Passivation of Nanoporous TiO₂ via Atomic Layer Deposition of ZrO₂ for Solid-State Dye-Sensitized Solar Cell Applications. J. Phys. Chem. C. 2009; 113: 18385-90.
- Kim HN, Moon JH. Enhanced Photovoltaic Properties of Nb₂O₅-Coated TiO₂ 3D Ordered Porous Electrodes in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces. 2012; 4: 5821-25.
- Lu X, Mou X, Wu J et al. Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO₂ Electrodes: Efficient Electron Injection and Transfer. Adv. Funct. Mater. 2010; 20 509-15.
- Wang M, Bai S, Chen A, Duan Y et al. Improved photovoltaic performance of dye-sensitized solar cells by Sb-doped TiO₂ photoanode. Electrochim. Acta. 2012; 77: 54-59.
- 17. Yang M, Kim D, Jha H et al. Nb doping of TiO_2 nanotubes for an enhanced efficiency of dyesensitized solar cells. Chem. Commun. 2011; 47: 2032-34.
- Tian H, Hu L, Zhang C et al. Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO₂ Solar Cells. J. Phys. Chem. C. 2010; 114: 1627-32.
- Hafez H, Saif M, Abdel-Mottaleb MSA. Down-converting lanthanide doped TiO₂ photoelectrodes for efficiency enhancement of dye-sensitized solar cells. J. Power Sources. 2011; 196: 5792–96.
- 20. Im JS, Lee SK, Lee YS. Cocktail effect of Fe₂O₃ and TiO₂ semiconductors for a high performance dye-sensitized solar cell. Appl. Surf. Sci. 2011; 257: 2164–69.
- 21. Shaikh SMF, Rahman G, Mane R, Joo O. Bismuth oxide nanoplates-based efficient DSSCs: Influence of ZnO surface passivation layer. Electrochim. Acta. 2013; 111: 593-600.
- 22. An'amt MN, Radiman S, Huang NM et al. Sol–gel hydrothermal synthesis of bismuth–TiO₂ nanocubes for dye-sensitized solar cell. Ceram. Int. 2010; 36: 2215–20.

- Moula G, Mumin MA, Charpentier PA. Enhancement of Photocurrent in Dye-Sensitized Solar Cells Using Bismuth Doped TiO₂- Graphene as a Hot Carrier Transport. J. Nanomater. Mol. Nanotechnol. (2013), S1:002. doi: 10.4172/2324-8777.S1-002.
- 24. Leontie L, Caraman M, Visinoiuc A, Rusu GI. On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition. Thin Solid Films. 2005; 4: 230-35.
- Lafuente B, Downs RT, Yang H, Stone N. The power of databases: the RRUFF project. In: Highlights in Mineralogical Crystallography, T Armbruster and R.M. Danisi, eds. Berlin, Germany, W. De Gruyter, 2015; 4:1-30.
- Stojanovic BD. Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process. Technol. 2003; 143/144: 78-81.
- 27. Ohara S, Kondo A, Shimoda H et al. Rapid mechanochemical synthesis of fine barium titanate nanoparticles. Mater. Lett. 2008; 62: 2957-59.
- Ruben S. Handbook of the Elements", 8th Printing, Open Court Publishing Company, 1998. ISBN: 0-87548-399-2
- Peter LM. Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 2007; 9: 2630-42.
- Xu Y, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000; 85: 543-56.