

Research article

Available online www.ijsrr.org

ISSN: 2279-0543

International Journal of Scientific Research and Reviews

K-Contra Harmonic Mean Labeling of Some Graphs

A Mydeen Bibi^{*} and Al. Yakavi

^{*}Mathematics The Standard Fireworks Rajaratnam College for women Sivakasi Tamilnadu India Email: <u>amydeen2006@gmail.com</u> Mob.9487715523. The Standard Fireworks Rajaratnam College for women, Sivakasi, Tamilnadu, India

ABSTRACT

Let G be a (p, q) graph. A function f is called a k-contra harmonic mean labelling of a graph G if $f: V(G) \rightarrow \{k, k+1, k+2, ..., k+q\}$ in such a way that the function

 $f^*: E(G) \rightarrow \{k, k+1, k+2, \dots, k+q-1\}$ defined as,

 $f^*(\mathbf{e} = \mathbf{uv}) = \left\lfloor \frac{f(\mathbf{u})^2 + f(\mathbf{v})^2}{f(\mathbf{u}) + f(\mathbf{v})} \right\rfloor$ or $\left\lfloor \frac{f(\mathbf{u})^2 + f(\mathbf{v})^2}{f(\mathbf{u}) + f(\mathbf{v})} \right\rfloor$ edge labels. The graph which admits k-contra harmonic

mean labelling is called k-Contra harmonic mean graph.

KEYWORDS :k-Contra Harmonic mean labeling, K-Contra Harmonic mean graphs, Path, Cycle, Comb, etc.

*Corresponding author:

Dr. A. Mydeenbibi

The Standard Fireworks Rajaratnam College for women,

Sivakasi, Tamilnadu, India.

Email: amydeen2006@gmail.com Mob. 9487715523.

1. INTRODUCTION

By a graph G = (V(G), E(G)) with p vertices and q edges we mean a simple, connected and undirected graph. In this paper a brief summary of definitions and other information is given in order to maintain compactness. The term not defined here are used in the sense of Harary².

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A useful survey on graph labeling by J.A. Gallian (2016) can be found in ¹. If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling).

All graphs in this paper are simple, finite, undirected. Let G be a graph with p vertices and q edges. For a detail survey of graph labeling we refer to Gallian ¹. For all other standard terminology and notation we follow Harary ². S. Somasundaram and R. Ponraj introduced mean labeling for some standard graphs in 2013. S.S. Sandhya and S. Somasundaram introduced Harmonic mean labeling of graph. S. S. Sandhya, S. Somasundaram and J. Rajeshni Golda introduced Contra Harmonic mean labeling of graphs⁹.

We have introduced K- Contra Harmonic mean labeling. In this paper we investigate the k-Contra Harmonic mean labeling behaviour of some special graphs. The following definitions are useful for our present study.

Definition 1.1Let G be a (p, q) graph. A function f is called a k-contra harmonic mean labelling of a graph G if $f: V(G) \rightarrow \{k, k+1, k+2, ..., k+q\}$ in such a way that the function $f^*: E(G) \rightarrow \{k, k+1, k+2, ..., k+q-1\}$ defined as

 $f^*(\mathbf{e} = \mathbf{uv}) = \left[\frac{f(\mathbf{u})^2 + f(\mathbf{v})^2}{f(\mathbf{u}) + f(\mathbf{v})}\right] \text{ or } \left[\frac{f(\mathbf{u})^2 + f(\mathbf{v})^2}{f(\mathbf{u}) + f(\mathbf{v})}\right] \text{ with distinct edge labels. The graph which admits k-$

contra harmonic mean labeling is called k-contra harmonic mean graph.

Definition 1.2The union of two graphs $G1=(V_1,E_1)$ and $G2=(V_2,E_2)$ is a graph $G=G_1 \cup G_2$ with vertex set $V=V_1 \cup V_2$ and edge set $E=E_1 \cup E_2$.

Definition 1.3 The corona of two graphs G_1 and G_2 is the graph $G = G_1 \odot G_2$ formed by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 where the *i*thvertex of G_1 is adjacent to every vertex in the *i*thcopy of G_2

Definition 1.4 A Triangular ladder TL_n , $n \ge 2$ is a graph obtained from a ladder L_n by adding the edges $u_i v_{i+1}$, for $1 \le i \le n - 1$ where u_i and v_i for $1 \le i \le n$, are the vertices of L_n . Such that u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n are two paths of length n in L_n .

Definition 1.5An (m, n) kite graph consists of cycle of length m with nedges path attached to one vertex of a cycle.

Definition 1.6Comb is a graph obtained by joining a single pendant edge to each vertex of a path.

2.MAIN RESULTS

Theorem 2.1. The path P_n is a k-contra harmonic mean graph for all k and $n \ge 2$.

Proof:Let $V(P_n) = \{v_i \mid 1 \le i \le n\}$ and $E(P_n) = \{e = v_i v_{i+1} \mid 1 \le i \le n-1\}$

Define a function $f : V(G) \rightarrow \{k, k+1, k+2, \dots, k+q\}$ by

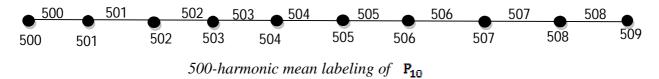
 $f(\mathbf{v}_i) = k + i - 1, 1 \le i \le n$

Then the induced edge labels are

 $f^*(e_i) = k + i - 1, 1 \le i \le n - 1$

The above defined function f provides k- contra harmonic mean labeling of the graph. Hence \mathbf{P}_n is a k- contra harmonic mean graph.

Example 2.2



Theorem 2.3The cycle graph $C_{\mathbb{N}}$ is a k-contra harmonic mean graph.

Proof:Let $u_1, u_2, \ldots, u_n, u_1$ be the given cycle of length *n*.

Define a function $f : V(G) \rightarrow \{k, k+1, k+2, \dots, k+q\}$ by

$$f(u_i) = k + i - 1, for 1 \le i \le n - 1,$$

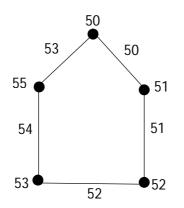
$$f(u_i) = k + q, \quad for \ i = n.$$

Then the induced edge labels are

 $f^{*}(u_{i} u_{i+1}) = k + i - 1 , for \ 1 \le i \le n - 2$ $f^{*}(u_{i} u_{i+1}) = k + q - 1, for \ i = n - 1$ $f^{*}(u_{i} u_{i}) = k + q - 2, for \ i = n$

The above defined function f provides k- contra harmonic mean labeling of the graph.

Hence C_n is a k- contra harmonic mean graph.



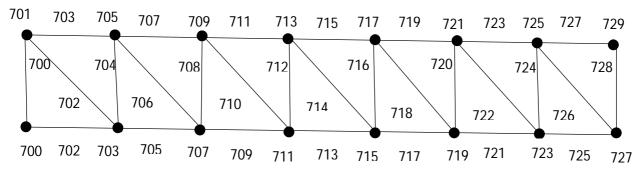
50-contra harmonic mean labeling of C_{5}

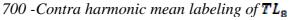
Theorem 2.4The Triangular ladder TL_n is k- contra harmonic mean graph for all k and $n \ge 2$.

Proof:Let $V(TL_n) = \{u_i, v_i \setminus 1 \le i \le n\}$ and $E(TL_n) = \{u_iu_{i+1}, v_iv_{i+1}, u_iv_{i+1} \setminus 1 \le i \le n-1\} \cup \{u_iv_i \setminus 1 \le i \le n\}$. First we label the vertices as follows Define a function $f : V(G) \rightarrow \{k, k+1, k+2, ..., k+q\}$ by $f(u_i) = k + 4i - 3$, for $1 \le i \le n$ $f(v_1) = k$ $f(v_1) = k$ $f(v_1) = k + 4i - 5$, for $2 \le i \le n$ Then the induced edge labels are $f^*(u_iu_{i+1}) = k + 4i - 1$, for $1 \le i \le n-1$ $f^*(v_iv_{i+1}) = k + 4i - 3$, for $1 \le i \le n-1$ $f^*(u_iv_i) = k + 4i - 4$, for $1 \le i \le n-1$ $f^*(u_iv_{i+1}) = k + 4i - 4$, for $1 \le i \le n-1$

The above defined function f provides k- contra harmonic mean labeling of the graph.

Hence TL_n is a k- contra harmonic mean graph.





Theorem 2.5A graph obtained by attaching a triangle at each pendent vertex of a comb is k- Contra harmonic mean graph for all k.

Proof: Let G be a graph obtained by attaching a triangle K_3 at each pendentvertex of P_nOK_i . Let $u_{ii}v_i$ be the vertices of the comb $P_n \odot K_1$ in which v_i is joined with the vertex u_i of P_n . Let x_i, y_i, z_i be the vertices of i^{th} copy of K_3 . Identify z_i with $v_i, 1 \le i \le n$.

The resultant graph is G whose edge set is

 $E = \{ u_i u_{i+1} \setminus 1 \le i \le n-1 \} U \{ u_i v_i, v_i x_i, v_i y_i, x_i y_i \setminus 1 \le i \le n \}.$ Define a function $f : V(G) \rightarrow \{k, k+1, k+2, \dots, k+q\}$ by $f(u_i) = k + 5i - 3, \quad for \ 1 \le i \le n$

 $f(v_i) = k + 5i - 2, for 1 \le i \le n$

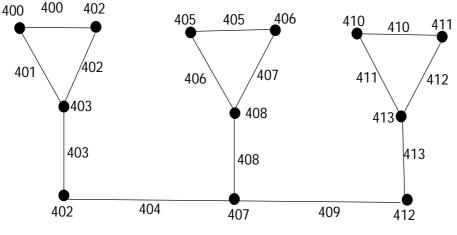
 $f(x_i) = k + 5i - 5, for 1 \le i \le n$

$$f(y_i) = k + 5i - 4, for 1 \le i \le n$$

Then the induced edge labels are

 $f^{*}(u_{i}u_{i+1}) = k + 5i - 1, for \ 1 \le i \le n - 1$ $f^{*}(u_{i}v_{i}) = k + 5i - 2, for \ 1 \le i \le n$ $f^{*}(v_{i}x_{i}) = k + 5i - 4, for \ 1 \le i \le n$ $f^{*}(v_{i}y_{i}) = k + 5i - 3, for \ 1 \le i \le n$ $f^{*}(x_{i}y_{i}) = k + 5i - 5, for \ 1 \le i \le n$

The above defined function f provides k-contra harmonic mean labeling of the graph. Hence the graph G is k- contra harmonic mean graph.



400 - Contra harmonic mean labeling of G

Theorem 2.7PnOK1is k- contra harmonic mean labelling

Proof: Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be the path \mathbf{P}_n . Let \mathbf{w}_i be the vertices which is joined to the vertex $\mathbf{v}_i, 1 \leq i \leq n$ of the path \mathbf{P}_n . The resultant graph is $\mathbf{P}_n \bigcirc \mathbf{K}_1$.

Let $G = \mathbf{P}_n \odot \mathbf{K}_1$. Define a function $f : \mathbf{V}(\mathbf{G}) \rightarrow \{\mathbf{k}, \mathbf{k} + 1, \mathbf{k} + 2, \dots, \mathbf{k} + q\}$ by

 $f(\mathbf{v}_i) = k + 2i - 2 \text{ for } 1 \le i \le n$

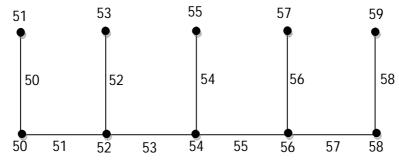
 $fw_i) = k + 2i - 1 for 1 \le i \le n$

Then the distinct edge labels are

 $f^{*}(\mathbf{v}_{i}\mathbf{v}_{i+1}) = k + 2i - 1, for \ 1 \le i \le n - 1$ $f^{*}(\mathbf{v}_{i}\mathbf{w}_{i}) = k + 2i - 2, for \ 1 \le i \le n$

The above defined function f provides k-contra harmonic mean labelling of the graph. Hence $P_n OK_1$ is k- contra harmonic mean labelling.

Example: 2.8



50-contra harmonic mean labelling of P_5OK_1

Theorem: 2.9A Triangular snake $T_n (n \ge 2)$ is k -contra harmonic mean graph $\forall k \ge 2$. **Proof:**Let $V(T_n) = \{ u_i \mid 1 \le i \le n \} \cup \{ v_i \mid 1 \le i \le n-1 \}$ and $E(T_n) = \{ u_i u_{i+1}, u_{i+1} v_i, u_i v_i \mid 1 \le i \le n-1 \}$.

First we label the vertices as follows.

Define a function $f : V(T_n) \rightarrow \{k, k+1, k+2, \dots, k+q\}$ by

 $f(u_i) = k + 3i - 3$, for $1 \le i \le n$

$$f(\mathbf{v}_1) = k + 1$$

 $f(v_i) = k + 3i - 2$, for $2 \le i \le n - 1$

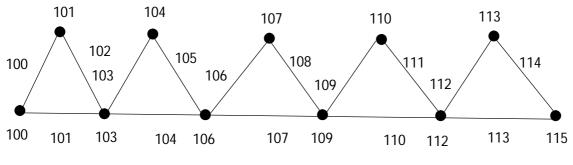
Then the induced edge labels are

 $\begin{aligned} f^*(\mathbf{u}_1\mathbf{u}_2) &= k+1 \\ f^*(\mathbf{u}_i\mathbf{u}_{i+1}) &= k+3i+1 \ , for \ 2 \leq i \leq n-1 \\ f^*(\mathbf{u}_i\mathbf{v}_i) &= k+3i-3 \ , for \ 1 \leq i \leq n-1 \\ f^*(\mathbf{u}_{i+1}\mathbf{v}_i) &= k+3i-1 \ , for \ 2 \leq i \leq n-1 \\ f^*(\mathbf{u}_2\mathbf{v}_1) &= k+2 \end{aligned}$

IJSRR, 8(2) April. – June., 2019

The above defined function f provides k-contra harmonic mean labeling of the graph. Hence T_{m} is a k- Contra harmonic mean graph.

Example 2.10



100– Contra harmonic mean graph of T₆

Theorem 2.11A(m, n) kite graph G is a k-contra harmonic mean graph.

Proof: Let $u_1, u_2, ..., u_m, u_1$ be the given cycle of length m and $v_1, v_2, ..., v_n$ be the given path of length n.

Define a function $f : V(G) \rightarrow \{k, k+1, k+2, \dots, k+q\}$ by

$$f(u_i) = k + i - 1, for \ 1 \le i \le m,$$

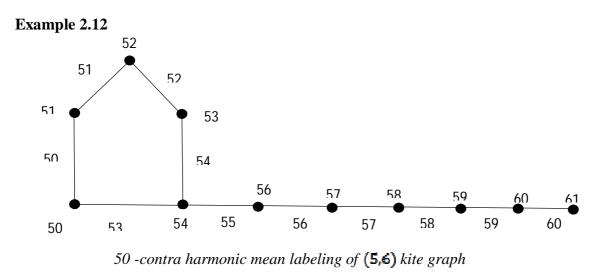
$$f(v_i) = k + i + 5, for \ 1 \le i \le n.$$

Then the induced edge labels are

$$f^{*}(u_{i}u_{i+1}) = k + i - 1 , for \ 1 \le i \le n - 2$$
$$f^{*}(u_{m}u_{m-1}) = k + m - 1$$
$$f^{*}(u_{1}u_{m}) = k + 3$$

and the edge labels of the path are $\{k + m + 1, k + m + 2, ..., k + m + n - 1\}$. The above defined function f provides k-contra harmonic mean labeling of the graph.

Hence the (m, n) kite graph is a k-contra harmonic mean graph.



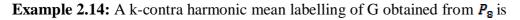
Theorem 2.13Let \mathbb{P}_n be the path and G be the graph obtained from \mathbb{P}_n by attaching \mathbb{C}_3 in both the end edges of \mathbb{P}_n . Then G is a k-contra harmonic mean graph.

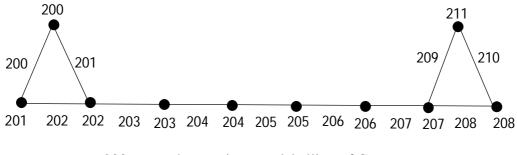
Proof: Let \mathbb{P}_n be the path u_1, u_2, \dots, u_n and $v_1u_1u_2, v_2u_{n-1}u_n$ be the triangles at the end.

Define a function $f : V(G) \rightarrow \{k, k + 1, k + 2, ..., k + q\}$ by $f(u_i) = k + i, for 1 \le i \le n,$ $f(v_1) = k; f(v_2) = k + q.$ Then the induced edge labels are $f^*(u_i u_{i+1}) = k + i + 1, for 1 \le i \le n - 1$ $f^*(u_1 v_1) = k$ $f^*(u_2 v_1) = k + 1$ $f^*(u_{n-1} v_2) = k + n + 1$

 $f^*(\mathbf{u}_n\mathbf{v}_2) = k + n + 2$

The above defined function f provides k-contra harmonic mean labelling of the graph Hence G is a k-contra harmonic mean graph.





200-contra harmonic mean labelling of G

3. CONCLUSION

The Study of labelled graph is important due to its diversified applications. It is very interesting to investigate graphs which admit k-Contra Harmonic Mean Labelling. In this paper, we proved that Path, Triangular Ladder TL_m , a graph obtained by attaching a triangle at each pendent vertex of a comb, Comb, Triangular Snake, (m, n)Kite graph, the graph obtained from P_n by attaching C₃ in both the end edges of P_n are k-Contra Harmonic Mean Graphs. The derived results are demonstrated by means of sufficient illustrations which provide better understanding. It is possible to investigate similar results for several other graphs.

REFERENCES

- Gallian. A Dynamic Survey of graph labeling. The electronic Journal of Combination 2012; 17# DS6.
- 2. Harary(F). Graph Theory. Narosa publishing House Reading, New Delhi, 1988.
- S. Somasundaram, R.Ponraj "Mean Labeling of Graphs', National Academy of Science Letter 26: 210-213.
- S. Somasundaram and S.S.Sandhya 'Harmonic Mean Labeling of Graphs', Journal of Combinatorial Mathematics and Combinatorial Computing. ISB 978-1-910747-7-2Pg. No. 134 to 136.
- 5. S.S. Sandhya, S. Somasundaram and R. Ponraj, "Some results on Harmonic mean Graphs", International Journal of Contemporary Mathematical Sciences 2012; 7(4):197-208.
- 6. S. S. Sandhya, S. Somasundaram and R. Ponraj, "Some more results on Harmonic mean graphs", Journal of Mathematics Research, 2012; 4(1): 21-29.
- S. S. Sandhya, S. Somasundaram and R. Ponraj, "Harmonic mean labelling of some Cycle Related Graphs", International Journal of Mathematical Analysis, 2012; 6(40):1997-2005.
- S. Somasundaram and R. Ponraj, "Mean labelling of graphs", *National Academy of Science Letters*, 2003; 26: 210 213.
- M. Tamilselvi and N. Revathi, "k- Harmonic Mean Labeling of Some Graphs", International Journal of Mathematics Trends and Technology- December 2017; 52(4)
- 10. Sandhya S.S, Somasundaram. S and J. Rajeshni Golda, "Contra Harmonic mean labeling of Some More graphs", communicated to International Journal of Contemporary Mathematical Science
- 11. Selvam Avadayappan and R. Vasuki, "New families of mean graphs", International J. Math. combin. 2010; 2: 68-80.
- 12. Somasundaram (S) and Ponraj (R). Mean labelling of graphs. National Academy of Science letters 2003; 26: 210-213.
- 13. S.S Sandhya, S. Somasundaram and J. Rajeshni Golda, "Contra Harmonic Mean Labelling of Graphs" communicated to Journal of Mathematics Research.
- 14. S.S. Sandhya, S. Somasundaram and J. Rajeshni Golda, "Contra Harmonic Mean Labelling of Disconnected Graphs", Global Journal of Mathematical Sciences.
- 15. Theory and Practical. ISSN 0974-3200 2017; 9(1):1-15.