## I ntemational Joumal of SaientificReserchand Reviens

## K-Contra Harmonic Mean Labeling of Some Graphs

## A Mydeen Bibi* and Al. Yakavi

*Mathematics The Standard Fireworks Rajaratnam College for women Sivakasi Tamilnadu India Email: amydeen2006@gmail.com Mob. 9487715523. The Standard Fireworks Rajaratnam College for women, Sivakasi, Tamilnadu, India


#### Abstract

Let G be a ( $\mathrm{p}, \mathrm{q}$ ) graph. A function f is called a k-contra harmonic mean labelling of a graph G if $f: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}\}$ in such a way that the function $f^{*}: E(G) \rightarrow\{k, k+\mathbf{1}, k+2, \ldots, k+q-1\}$ defined as, $f^{*}(e=u v)=\left[\frac{\mathrm{f}(\mathrm{u})^{2}+\mathrm{f}(\mathrm{v})^{2}}{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})}\right]$ or $\left[\frac{\mathrm{f}(\mathrm{u})^{3}+\mathrm{f}(\mathrm{v})^{2}}{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})}\right]$ edge labels. The graph which admits k-contra harmonic mean labelling is called k -Contra harmonic mean graph.

KEYWORDS :k-Contra Harmonic mean labeling, K-Contra Harmonic mean graphs, Path, Cycle, Comb, etc.


## *Corresponding author:

## Dr. A. Mydeenbibi

The Standard Fireworks Rajaratnam College for women,
Sivakasi, Tamilnadu, India.
Email: amydeen2006@gmail.com Mob. 9487715523.

## 1. INTRODUCTION

By a graph $G=(V(G), E(G))$ with p vertices and q edges we mean a simple, connected and undirected graph. In this paper a brief summary of definitions and other information is given in order to maintain compactness. The term not defined here are used in the sense of Harary ${ }^{2}$.

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A useful survey on graph labeling by J.A. Gallian (2016) can be found in ${ }^{1}$. If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling).

All graphs in this paper are simple, finite, undirected. Let $G$ be a graph with $p$ vertices and $q$ edges. For a detail survey of graph labeling we refer to Gallian ${ }^{1}$. For all other standard terminology and notation we follow Harary ${ }^{2}$. S. Somasundaram and R. Ponraj introduced mean labeling for some standard graphs in 2013. S.S. Sandhya and S. Somasundaram introduced Harmonic mean labeling of graph. S. S. Sandhya, S. Somasundaram and J. Rajeshni Golda introduced Contra Harmonic mean labeling of graphs ${ }^{9}$.

We have introduced K- Contra Harmonic mean labeling.In this paper we investigate the k-Contra Harmonic mean labeling behaviour of some special graphs. The following definitions are useful for our present study.
Definition 1.1Let $G$ be a $(p, q)$ graph. A function $f$ is called a k-contra harmonic mean labelling of a graph G if $f: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}\}$ in such a way that the functionf: $\mathrm{E}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}-1\}$ defined as
$f^{*}(\mathrm{e}=\mathrm{uv})=\left[\frac{\left(\mathrm{f}(\mathrm{u})^{2}+\mathrm{f}(\mathrm{v})^{2}\right.}{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})}\right]$ or $\left[\frac{\mathrm{f}(\mathrm{u})^{2}+\mathrm{f}(\mathrm{v})^{2}}{\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})}\right]$ with distinct edge labels. The graph which admits k contra harmonic mean labeling is called k -contra harmonic mean graph.
Definition 1.2The union of two graphs $G 1=\left(V_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G} 2=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ is a graph $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}$ with vertex set $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and edge set $\mathrm{E}=\mathrm{E}_{1} \cup \mathrm{E}_{2}$.

Definition 1.3 The corona of two graphs $G_{1}$ and $G_{2}$ is the graph $G=G_{1} \odot G_{2}$ formed by taking one copy of $\mathrm{G}_{1}$ and $\left|V\left(\mathrm{G}_{1}\right)\right|$ copies of $\mathrm{G}_{2}$ where the $i^{\text {th }}$ vertex of $\mathrm{G}_{1}$ is adjacent to every vertex in the $i^{\text {th }}$ copy of $\mathrm{G}_{2}$
Definition 1.4A Triangular ladder $T L_{n}, n \geq 2$ is a graph obtained from a ladder $L_{m}$ by addingthe edges $u_{i} v_{i+1}$ for $1 \leq i \leq n-1$ whereu $u_{i}$ and $v_{i}$ for $1 \leq i \leq n$, are the vertices of $L_{n}$ Suchthat $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ are two paths of length n in $L_{n}$.
Definition 1.5An (m, $n$ ) kite graph consists of cycle of length $m$ with nedges path attached to one vertex of a cycle.

Definition 1.6Comb is a graph obtained by joining a single pendant edge to each vertex of a path.

## 2.MAIN RESULTS

Theorem 2.1. The path $P_{r-1}$ is a $k$-contra harmonic mean graph for all k andn $\geq 2$.
Proof:Let $V\left(P_{n}\right)=\left\{v_{i} \backslash 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{e=v_{i} v_{i+1} \backslash 1 \leq i \leq n-1\right\}$
Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{k}, \mathrm{k}+1_{s} \mathrm{k}+2_{3} \ldots, \mathrm{k}+\mathrm{q}\right\}$ by
$f\left(\mathrm{v}_{\mathrm{i}}\right)=k+i-1,1 \leq i \leq n$
Then the induced edge labels are

$$
f^{*}\left(\mathrm{e}_{\mathrm{i}}\right)=k+i-1,1 \leq i \leq n-1
$$

The above defined function $f$ provides $k$ - contra harmonic mean labeling of the graph. Hence $P_{n}$ is a k - contra harmonic mean graph.

## Example 2.2



$$
\text { 500-harmonic mean labeling of } \mathrm{P}_{10}
$$

Theorem 2.3The cycle graph $C_{m}$ is a k-contra harmonic mean graph.
Proof:Let $u_{1}, u_{2}, \ldots, u_{n}, u_{1}$ be the given cycle of length $n$.
Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}] \mathrm{by}$
$f\left(u_{i}\right)=k+i-1$, for $1 \leq i \leq n-1$,
$f\left(u_{i}\right)=k+q, \quad$ for $i=n$.
Then the induced edge labels are

$$
\begin{aligned}
& f^{*}\left(\mathrm{u}_{\mathrm{i}} u_{i+1}\right)=k+i-1, \text { for } 1 \leq i \leq n-2 \\
& f^{*}\left(u_{\mathrm{i}} u_{i+1}\right)=k+q-1, \text { for } i=n-1 \\
& f^{*}\left(\mathrm{u}_{1} u_{i}\right)=k+q-2, \text { for } i=n
\end{aligned}
$$

The above defined function $f$ provides k - contra harmonic mean labeling of the graph. Hence $C_{n}$ is a k- contra harmonic mean graph.

## Example 2.3



Theorem 2.4The Triangular ladder $T L_{n}$ is k - contra harmonic mean graph for all k and $\mathrm{n} \geq 2$.
Proof:Let $V\left(T L_{n}\right)=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \backslash 1 \leq i \leq m\right.$ and
$E\left(T L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i+1} \backslash 1 \leq i \leq n-1\right\} \cup\left\{u_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \backslash 1 \leq i \leq n\right\}$.
First we label the vertices as follows
Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}\}$ by
$f\left(\mathrm{u}_{\mathrm{i}}\right)=k+4 l-3$ for $1 \leq i \leq n$
$f\left(\mathrm{v}_{1}\right)=k$
$f\left(\mathrm{v}_{\mathrm{i}}\right)=k+4 i-5$, for $2 \leq i \leq n$
Then the induced edge labels are
$f^{*}\left(u_{i} u_{i+1}\right)=k+4 i-1$, for $1 \leq i \leq n-1$
$f^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=k+4 i-3$, for $1 \leq i \leq n-1$
$f^{*}\left(u_{i} v_{i}\right)=k+4 i-4$, for $1 \leq i \leq n$
$f^{*}\left(u_{i} v_{i+1}\right)=k+4 i-2$ for $1 \leq i \leq n-1$
The above defined function $f$ provides k - contra harmonic mean labeling of the graph.
Hence $T L_{n}$ is a k- contra harmonic mean graph.

## Example: 2.4



700 -Contra harmonic mean labeling of $T L_{8}$

Theorem 2.5A graph obtained by attaching a triangle at each pendent vertex of a comb is k - Contra harmonic mean graph for all k .
Proof: Let G be a graph obtained by attaching a triangle $K_{3}$ at each pendentvertex of $P_{n} \odot K_{1}$. Let $u_{i}, v_{i}$ be the vertices of the comb $P_{n} \odot K_{1}$ in which $v_{i}$ is joined withthe vertex $u_{i}$ of $P_{n}$. Let $x_{i} y y_{i}, z_{i}$ be the vertices of $i^{\text {th }}$ copy of $K_{3}$. Identify $z_{i}$ with $v_{i}, 1 \leq i \leq n$.
The resultant graph is $G$ whose edge set is

$$
E=\left\{u_{i} u_{i+1} \backslash 1 \leq i \leq n-1\right\} U\left\{u_{i} v_{i}, v_{i} x_{i}, v_{i} y_{i}, x_{i} y_{i} \backslash 1 \leq i \leq n\right\}
$$

Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=k+5 i-3, \text { for } 1 \leq i \leq n \\
& f\left(\mathrm{v}_{\mathrm{i}}\right)=k+5 i-2, \text { for } 1 \leq i \leq n \\
& f\left(\mathrm{x}_{\mathrm{i}}\right)=k+5 i-5 \text { for } 1 \leq i \leq n \\
& f\left(\mathrm{y}_{\mathrm{i}}\right)=k+5 i-4, \text { for } 1 \leq i \leq n
\end{aligned}
$$

Then the induced edge labels are

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=k+5 i-1, \text { for } 1 \leq i \leq n-1 \\
& f^{*}\left(u_{1} v_{i}\right)=k+5 i-2 \text { for } 1 \leq i \leq n \\
& f^{*}\left(v_{i} x_{i}\right)=k+5 i-4, \text { for } 1 \leq i \leq n \\
& f^{*}\left(v_{1} y_{i}\right)=k+5 i-3 \text {, for } 1 \leq i \leq n \\
& f^{*}\left(\mathrm{x}_{\mathrm{i}} y_{i}\right)=k+5 i-5 \text {, for } 1 \leq i \leq n
\end{aligned}
$$

The above defined function $f$ provides k-contra harmonic mean labeling of the graph. Hence the graph G is k - contra harmonic mean graph.

## Example: 2.6



Theorem 2.7 $\mathrm{P}_{\mathrm{n}} \mathrm{OK}_{1}$ is k - contra harmonic mean labelling

Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the path $P_{n}$.Let $w_{1}$ be the vertices which is joined to the vertexv $v_{i}, 1 \leq i \leq n$ of the path $P_{n}$. The resultant graph is $P_{n} \rho K_{1}$.
Let $G=P_{n} \odot K_{1}$. Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\left\{\mathrm{k}_{\mathrm{k}} \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}\right\}$ by
$f\left(\mathrm{v}_{\mathrm{i}}\right)=k+2 i-2$ for $1 \leq i \leq n$
$f\left(w_{i}\right)=k+2 i-1$ for $1 \leq i \leq n$
Then the distinct edge labels are
$f^{*}\left(\mathbf{v}_{1} v_{i+1}\right)=k+2 i-1$,for $1 \leq i \leq n-1$
$f^{*}\left(v_{1} w_{1}\right)=k+2 i-2$ for $1 \leq i \leq n$
The above defined function $f$ provides k-contra harmonic mean labelling of the graph. Hence $\mathrm{P}_{\mathrm{n}} \mathrm{OK}_{\mathrm{i}}$ is k - contra harmonic mean labelling.

## Example: 2.8



Theorem: 2.9A Triangular snake $T_{n}(n \geq 2)$ is $k$-contra harmonic mean graph $\forall k \geq 2$.
Proof:Let $V\left(T_{n}\right)=\left\{\mathbf{u}_{\mathrm{i}} \backslash \mathbb{1} \leq i \leq n\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \backslash 1 \leq i \leq n-\mathbb{1}\right\}$ and $E\left(T_{n}\right)=\left\{u_{j} u_{i+1}, u_{i+1} v_{i}, u_{i} v_{i} \backslash 1 \leq i \leq n-1\right\}$.

First we label the vertices as follows.
Define a function $f: \mathrm{V}\left(T_{n}\right) \rightarrow\left\{\mathrm{k}_{\boldsymbol{p}} \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}\right\}$ by
$f\left(u_{i}\right)=k+3 i-3$, for $1 \leq i \leq n$
$f\left(\mathrm{v}_{1}\right)=k+1$
$f\left(\mathrm{v}_{\mathrm{i}}\right)=k+3 i-2$, for $2 \leq i \leq n-\mathbf{1}$
Then the induced edge labels are
$f^{*}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=k+1$
$f^{*}\left(u_{i} u_{i+1}\right)=k+3 i+1$ for $2 \leq i \leq n-1$
$f^{*}\left(u_{i} v_{i}\right)=k+3 i-3 \quad$,for $1 \leq i \leq n-1$
$f^{*}\left(u_{i+1} v_{i}\right)=k+3 i-1$, for $2 \leq i \leq n-1$
$f^{*}\left(\mathrm{u}_{2} \mathrm{v}_{1}\right)=k+2$

The above defined function f provides k-contra harmonic mean labeling of the graph. Hence $T_{n}$ is a k-Contra harmonic mean graph.

## Example 2.10



100- Contra harmonic mean graph of $\mathrm{T}_{6}$
Theorem 2.11A $(m, n)$ kite graph $G$ is a $k$-contra harmonic mean graph.
Proof: Let $u_{1}, u_{2}, \ldots, u_{m}, u_{1}$ be the given cycle of length $m$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the given path of length n.

Define a function $f: V(G) \rightarrow\{k, k+1, k+2, \ldots, k+q\} b y$
$f\left(\mathrm{u}_{\mathrm{i}}\right)=k+i-1$, for $1 \leq i \leq m_{1}$
$f\left(\mathrm{v}_{\mathrm{i}}\right)=k+i+5$, for $1 \leq i \leq n$.
Then the induced edge labels are
$f^{*}\left(u_{i} u_{i+1}\right)=k+i-1$, for $1 \leq i \leq n-2$
$f^{*}\left(u_{m} u_{m-1}\right)=k+m-1$
$f^{*}\left(\mathrm{u}_{1} u_{\mathrm{m}}\right)=k+3$
and the edge labels of the path are $\{k+m+1, k+m+2, \ldots, k+m+n-1\}$. The above defined function f provides k -contra harmonic mean labeling of the graph.
Hence the ( $m, n$ ) kite graph is a k-contra harmonic mean graph.

Example 2.12


50 -contra harmonic mean labeling of $(5,6)$ kite graph

Theorem 2.13Let $P_{n}$ be the path and $G$ be the graph obtained from $P_{n}$ by attaching $C_{a}$ in both the end edges of $P_{n}$. Then $G$ is a k-contra harmonic mean graph.

Proof: Let $P_{n}$ be the path $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1} u_{1} u_{2}, v_{2} u_{n-1} u_{n}$ be the triangles at the end.
Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+\mathrm{q}\}$ by

$$
\begin{aligned}
& f\left(\mathrm{u}_{\mathrm{i}}\right)=k+i_{n} \text { for } 1 \leq i \leq n_{s} \\
& f\left(\mathrm{v}_{1}\right)=k ; f\left(\mathrm{v}_{2}\right)=k+q .
\end{aligned}
$$

Then the induced edge labels are
$f^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=k+i+1$, for $1 \leq i \leq n-\mathbf{1}$
$f^{*}\left(\mathrm{u}_{1} \mathrm{v}_{1}\right)=k$
$f^{*}\left(u_{2} v_{1}\right)=k+\mathbb{1}$
$f^{*}\left(u_{n-1} v_{2}\right)=k+n+1$
$f^{*}\left(u_{n} v_{2}\right)=k+n+2$
The above defined function f provides k -contra harmonic mean labelling of the graph Hence G is a k -contra harmonic mean graph.
Example 2.14: A k-contra harmonic mean labelling of $G$ obtained from $P_{8}$ is


200-contra harmonic mean labelling of G

## 3. CONCLUSION

The Study of labelled graph is important due to its diversified applications. It is very interesting to investigate graphs which admit k-Contra Harmonic Mean Labelling. In this paper, we proved that Path, Triangular Ladder $T L_{w}$, graph obtained by attaching a triangle at each pendent vertex of a comb, Comb, Triangular Snake, ( $m, n$ )Kite graph, the graph obtained from $P_{n}$ by attaching $\mathrm{C}_{3}$ in both the end edges of $P_{n}$ are k-Contra Harmonic Mean Graphs. The derived results are demonstrated by means of sufficient illustrations which provide better understanding. It is possible to investigate similar results for several other graphs.

## REFERENCES

1. Gallian. A Dynamic Survey of graph labeling. The electronic Journal of Combination 2012; 17\# DS6.
2. Harary(F). Graph Theory. Narosa publishing House Reading, New Delhi, 1988.
3. S. Somasundaram, R.Ponraj "Mean Labeling of Graphs',National Academy of Science Letter 26: 210-213.
4. S. Somasundaram and S.S.Sandhya 'Harmonic Mean Labeling of Graphs', Journal of Combinatorial Mathematics and Combinatorial Computing. ISB 978-1-910747-7-2Pg. No. 134 to 136.
5. S.S. Sandhya, S. Somasundaram and R. Ponraj, "Some results on Harmonic mean Graphs", International Journal of Contemporary Mathematical Sciences 2012; 7(4):197-208.
6. S. S. Sandhya, S. Somasundaram and R. Ponraj, "Some more results on Harmonic mean graphs", Journal of Mathematics Research, 2012; 4(1): 21-29.
7. S. S. Sandhya, S. Somasundaram and R. Ponraj, "Harmonic mean labelling of some Cycle Related Graphs", International Journal of Mathematical Analysis, 2012; 6(40):1997-2005.
8. S. Somasundaram and R. Ponraj, "Mean labelling of graphs", National Academy of Science Letters, 2003; 26: 210 - 213.
9. M. Tamilselvi and N. Revathi, "k- Harmonic Mean Labeling of Some Graphs", International Journal of Mathematics Trends and Technology- December 2017; 52(4)
10. Sandhya S.S, Somasundaram. S and J. Rajeshni Golda, "Contra Harmonic mean labeling of Some More graphs", communicated to International Journal of Contemporary Mathematical Science
11. Selvam Avadayappan and R. Vasuki, "New families of mean graphs", International J. Math. combin. 2010; 2: 68-80.
12. Somasundaram (S) and Ponraj (R). Mean labelling of graphs. National Academy of Science letters 2003; 26: 210-213.
13. S.S Sandhya, S. Somasundaram and J. Rajeshni Golda, "Contra Harmonic Mean Labelling of Graphs" communicated to Journal of Mathematics Research.
14. S.S. Sandhya, S. Somasundaram and J. Rajeshni Golda, "Contra Harmonic Mean Labelling of Disconnected Graphs", Global Journal of Mathematical Sciences.
15. Theory and Practical. ISSN 0974-3200 2017; 9(1):1-15.
