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ABSTRACT 
The correspondence principle of linear viscoelasticity is used to derive the displacement 

fields of an elastic half-space overlying a viscoelastic half-space caused by a dipole source, assuming 

the medium to be elastic in dilatation and Kelvin, Maxwell or SLS (Standard linear solid) type 

viscoelastic in distortion. The results are valid for arbitrary values of the relaxation time and a 

change in the rigidity of the two half-spaces. The variation of the viscoelastic displacements with the 

epicentral distance as well as with the different relaxation time are studied and shown graphically.  
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INTRODUCTION 
The Papkovich-Neuber displacement potential functions for an arbitrary point force acting in 

an infinite medium consisting of two welded elastic half-spaces obtained by Rongved1. Heaton and 

Heaton2 obtained the deformation field produced by point force and force couples embedded in two 

Poissonian half-space by using Papkovich-Neuber displacement potential functions. Rosenman and 

Singh3 applied the correspondence principle of linear viscoelasticity to derive the quasi-static 

displacement field in a Maxwellian viscoelastic half-space. The correspondence principle of linear 

viscoelasticity has been extensively used by many authors (e.g.4-8) to calculate the quasi-static 

deformation of a viscoelastic half-space by a point or extended sources. The Galerkin vector 

approach has been used by Singh and Singh9 to obtain the displacement field due to various seismic 

sources in a homogeneous, isotropic, perfectly elastic half-space and then the correspondence 

principle of linear viscoelasticity is used to obtain the quasi-static displacement, stains, and stresses. 

Singh and Singh10 gave a simple procedure to obtain the quasi-static field in a viscoelastic half-

space. The displacement and stress fields due to a point displacement dislocation located at an 

arbitrary point of a two- phase medium consisting of two homogeneous, isotropic, perfectly elastic 

half-spaces in welded contact have been obtained by Kumari et al.11. Four axially symmetric sources, 

namely, a vertical force, a vertical dipole, a tensile dislocation on a horizontal fault and a 

compensated linear vector dipole (CLVD) in an elastic half-space were considered by Singh et al.12 

to model the ground deformation in volcanic areas. The displacement and strain fields due to these 

four sources are compared with the corresponding fields due to a center of dilatation. The 

deformation fields due to five axially symmetric sources, namely, a vertical force, a vertical dipole, a 

center of dilatation, a tensile dislocation on a horizontal fault and a compensated linear vector dipole 

(CLVD) in two welded elastic half-spaces obtained by Singh et al.13. 

Some materials usually have elastic as well as viscous property, therefore a theoretical study 

of viscoelasticity is an important subject in applied mechanics. A Viscoelastic medium has been used 

by many authors in various branches of science and technology particularly in geophysics and 

seismology.  

In the present paper, we have obtained the displacement components due to a dipole in a 

homogeneous, isotropic, elastic half-space overlying homogeneous, isotropic, viscoelastic half-

space. 
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THEORY 
Consider a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-

space ( 0z , Medium-1) with the elastic constants 111 ,,   in welded contact with other 

homogeneous, isotropic, viscoelastic half-space ( 0z , Medium-2) with the elastic 

constants 222 ,,  . 

Let the point source of unit magnitude oF  is located at the point (0, 0, c) in Medium-1.  

 

Fig. 1. Geometry of a point source in two welded half-spaces 

The solution will be given in terms of the Papkovich- Neuber displacement potentials which 

derive the displacement through the relation  

ikkii xu ),()1(2            (1) 

Where ),,( zyxxi   is the position vector,  - shear modulus,  43  where   is the Poisson’s 

Ratio. 

In case of nobody forces, the potentials  andi  must be harmonic:  

.02222  zyx  

The Papkovich- Neuber displacement potentials for a dipole in the x, y, and z-directions have 

been used by Kumari et al.11 in equation (1) to obtain the elastic solutions in an elastic half-space 

overlying elastic half-space. 

The viscoelastic solution is obtained from the elastic solution (Kumari et al.11) by first 

applying the correspondence principle of linear viscoelasticity and then inverting the Laplace 

transformed solution. These solutions are to be obtained by considering homogenous, isotropic, 
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elastic half-space overlying the homogenous, isotropic, viscoelastic half-space.   For this, we 

consider   22 , , and 11  and as constants. 

Following are the various combinations of elastic moduli  and which occur in the 

expressions of elastic displacements: 
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We have derived these auxiliary functions by considering the material is elastic in dilatation 

and viscoelastic in distortion for the three viscoelastic models, namely, a Kelvin Model, a Maxwell 

Model, and a Standard Linear Solid Model. It is assumed that the time t>0 and the source time 

function is the Heaviside step function H (t).  

DISPLACEMENT FIELD  

Displacement components for the dipole (11) in the x-direction (horizontal dipole 

(HD)) 
Following are the displacement components for the horizontal dipole: 
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Displacement components for the dipole (22) in the y-direction 
The corresponding displacement components for the dipole in the y-direction (dipole (22)) at 

point (0, 0, c) of an elastic half-space in welded contact with another viscoelastic half-space can be 

obtained from the corresponding expressions for dipole (11) on interchanging x and y. 

Displacement components for the dipole (33) in the z-direction (vertical dipole (VD)) 
Following are the displacement components for the vertical dipole: 
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For yu )1(  and yu )2(  we interchange x and y in xu )1(  and xu )2( respectively. 
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displacements for the dipole in medium-2. 
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Expressions for  tJ 3ˆ ,  tJ 4ˆ  and  tJ 5ˆ  for three viscoelastic models are given below: 

For Kelvin Model 
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the relaxation time. 
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For Maxwell Model 
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For Standard Linear Solid Model 
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RESULTS AND DISCUSSION 
To show the variation of elastic and viscoelastic displacements with the epicentral distance 

we assume that
2

,21
ryx    and define the dimensionless displacements as  

     0,,,4,, )1()1()1(
0

 zuuu
F

cUUU zyxzyx
  

  0,,,
4

)2()2()2(
0

 zuuu
F

c
zyx


 

For graphical representation, we assume that 312,2,0  Tandmz  . 

Fig.2 shows the effect of the relaxation time on the displacement components of the 

horizontal dipole for the three viscoelastic models, namely, Kelvin, Maxwell, and Standard Linear 

Solid model. The values of displacement xU  and zU along x-axis and z-axis increases with the 

increase of relaxation time. Graphical representation of displacement components for the three 

models is the same except for their maximum and minimum values. 

 The displacement components assume the maximum value in case of Maxwell and minimum 

in case of Kelvin for a particular value of time for all the displacements components as shown in 

table 1. 
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TABLE 1- Extremum. Values of the displacement components for HD (Horizontal dipole) 
Models 

 
Extremum. values of the displacement components for HD(Horizontal dipole) 

Along x-axis Along z-axis 

xU  zU  
Kelvin 0.09 0.45 

Maxwell 0.2 1 
SLS 0.125 0.62 

 

   
(a)                                                                  (b) 

  
(c)                                                                  (d) 

  
(e)                                                                    (f) 

Fig 2. Effect of the relaxation time 31  T  on the viscoelastic displacement field of the horizontal dipole at the 

interface 2,0  mz . (a, c, e) Horizontal displacement xU for Kelvin Model, Maxwell Model, and SLS Model 

respectively, (b, d, e) Vertical displacement zU  for Kelvin Model, Maxwell Model, and SLS Model respectively 

with the epicentral distance c
r . 
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Fig.3 shows the effect of the relaxation time on the displacement components of the vertical 

dipole for the three viscoelastic models namely, Kelvin, Maxwell, and Standard Linear Solid model. 

The numerical values of displacement xU  and zU along x-axis and z-axis increases with the increase 

of relaxation time. Graphical representation of displacement components for the three models is the 

same except for their maximum and minimum values. 

Numerically displacement components assume the maximum value in case of Maxwell and 

minimum in case of Kelvin for a particular value of time for all the displacements components as 

shown in table 2. 
TABLE 2- Extremum. Values of the displacement components for VD (Vertical dipole) 

Models 
 

Extremum. values of the displacement components for VD(Vertical dipole) 
Along x-axis Along z-axis 

xU  zU  
Kelvin 0.12 -1.25 

Maxwell 0.45 -3.1 
SLS 0.22 -1.9 

 

  
(a)                                                                        (b) 

  
(b)                                                                     (d) 

  
(e)                                                                (f) 

Fig 3. Effect of the relaxation time 31  T  on the viscoelastic displacement field of the vertical dipole at 
the interface 2,0  mz . (a, c, e) Horizontal displacement xU for Kelvin Model, Maxwell Model, and SLS Model 

respectively, (b, d, e) Vertical displacement zU  for Kelvin Model, Maxwell Model, and SLS Model respectively 

with the epicentral distance c
r . 
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 CONCLUSION 
 The explicit expressions for the displacements in an elastic half-space overlying viscoelastic 

half-spaces due to the dipole source have been obtained. The results are also compared graphically 

for three viscoelastic models, namely, a Kelvin Model, a Maxwell Model, and a Standard linear solid 

Model (SLS). Graphical representations reveal that numerically the displacement components 

assume the maximum values in case of Maxwell Model and minimum values are obtained in case of 

Kelvin Model. Two welded half-spaces have the same elastic properties at 1m . At 0T  all the 

viscoelastic results are same as an elastic solution obtained by Kumari et al. (1992). This study may 

have possible applications in the field of geophysics and seismology. 
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