

Research article Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

The Upper Total Edge Domination Number of a Graph

Sujin Flower. V

Holy Cross College (Autonomous), Nagercoil-629 004, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India Email:sujinflower@gmail.com Mobile No: +91-9790538138

ABSTRACT

Let $G = (V, E)$ be a connected graph of order *n*. The total edge dominating set S in a connected graph G is called a *minimal total edge dominating set* if no proper subset of S is a total edge dominating set of G. The *upper total edge domination number* $\gamma_{te}^+(G)$ of G is the maximum cardinality of a minimal total edge dominating sets of G . Some of its general properties satisfied by this concepts are studied. It is shown that for any integer $a \ge 1$, there exists a connected graph G such that $\gamma_{te}(G) = a + 1$ and $\gamma_{te}^+(G) = 2a$.

KEYWORDS:domination number, total domination number, edge domination number, total edge domination number, upper total domination number.

AMS SUBJECT CLASSIFICATION: 05C69.

***Corresponding author**

Sujin Flower. V

Holy Cross College (Autonomous), Nagercoil-629 004, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India Email:sujinflower@gmail.com Mobile No: +91-9790538138

IJSRR, 8(1) Jan. – March., 2019 Page 2649

1. INTRODUCTION

By a graph $G = (V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to Chartrand [1]. $N(v) = \{u \in V(G) : uv \in E(G)\}$ is called the *neighborhood* of the vertex v in G . A vertex v is an *extreme* vertex of a graph G if $\langle N(v) \rangle$ is complete. If $e = \{u, v\}$ is an edge of a graph G with $d(u) = 1$ and $d(v) > 1$, then we call e a *pendent edge, u* a leaf and v a *support vertex.* Let $L(G)$ be the set of all leaves of a graph G.For any connected graph G_i , a vertex $v \in V(G)$ is called a *cut vertex* of G if $V - v$ is no longer connected.A set of vertices D in a graph G is a *dominating set* if each vertex of G is dominated by some vertex of D. The *domination number* $\gamma(G)$ of G is the minimum cardinality of a dominating set of $G¹$. A *total dominating set* of a connected graph G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. Every graph without isolated vertices has a total dominating set, since $S = V(G)$ is such a set. The *total domination number* γ_t (G) of G is the minimum cardinality of total dominating sets S in $G^{2,3,4}$. A set of edges Mof G is called an *edgedominating set* if every edge of $E - M$ is adjacent to an element of *M*. An *edge domination number*, $\gamma_e(G)$ of G is the minimum cardinality of an edge dominating sets of $G^{5,6,7,8,9,10}$. An edge dominating set S of Gis called a *total edge dominating set* of G if $\langle S \rangle$ has no isolated edges. The *total edge domination number* γ_{te} (G) of G is the minimum cardinality taken over all total edge dominating sets of $G^{6,11}$.

2. THE UPPER TOTAL EDGE DOMINATION NUMBER OF A GRAPH *Definition 2. 1.*

The total edge dominating set S in a connected graph G is called a *minimal total edge dominating set* if no proper subset of S is a total edge dominating set of G. The *upper total edge domination number* $\gamma_{te}^{+}(G)$ of G is the maximum cardinality of a minimal total edge dominating sets of G .

Example 2.2

For the graph G given in Figure 1, $S_1 = \{v_1v_2, v_2v_5, v_5v_6\}$ and $S_2 = \{v_1v_7, v_1v_2, v_2v_5\}$ are the minimum total edge dominating sets of G so that $\gamma_{te}(G) = 3$. The set $S = \{v_1v_7, v_6v_7, v_2v_3, v_2v_5\}$ is a total edge dominating set of G and it is clear that no proper subset of S is the total edge dominating set of G and so S is the minimal total edge dominating set of ܩ. Also it is easily verified that no five element or six element subset is a minimal total edge dominating set of G, it follows that $\gamma_{te}^+(G) = 4$.

Remark 2.4

A graph with $\gamma_{te}^+(G) = 4$

Every minimum total edge dominating set of G is a minimal total edge dominating set of G and the converse is not true. For the graph G given in Figure 2.1, $S = \{v_1v_7, v_6v_7, v_2v_3, v_2v_5\}$ a minimal total edge dominating set but not a minimum total edge dominating set of G .

Theorem 2.5

For a connected graph G , $2 \leq \gamma_{te}(G) \leq \gamma_{te}(G) \leq m$.

Proof.

We know that any total edge dominating set needs at least two edges and $\text{so}_{t}(\mathcal{G}) \geq 2$. Since every minimal total edge dominating set is also the total edge dominating set, $\gamma_{te}(G) \leq \gamma_{te}^+(G)$. Also, since $E(G)$ is the total dominating set of G, it is clear that $\gamma_{te}^+(G) \leq m$. Thus $2 \leq \gamma_{te}(G) \leq \gamma_{te}^+(G) \leq m.$

Remark 2.6.

The bounds in Theorem 2.5 are sharp. For any graph $G = P_2$, $m = 2$, $\gamma_{te}(G) = 2$ and $\gamma_{te}^+(G) = 2$. Therefore $2 = \gamma_{te}(G) = \gamma_{te}^+(G) = m$. Also, all the inequalities in Theorem 2.5 are strict. For the graph G given in Figure $1, \gamma_{te}(G) = 3$, $\gamma_{te}^+(G) = 4$ and $m = 7$ so that $2 < \gamma_{te}(G) < \gamma_{te}^+(G) < m.$

Theorem 2.7.

For a connected graph G, $\gamma_{te}(G) = m$ if and only if $\gamma_{te}^+(G) = m$.

Proof.

Let $\gamma_{te}^{+}(G) = m$. Then $S = E(G)$ is the unique minimal total edge dominating set of G. Since no proper subset of S is the total edge dominating set, it is clear that S is the unique minimum total edge dominating set of G and so $\gamma_{te}(G) = m$. The converse follows from Theorem 2.3. ■

Theorem 2.8

For complete graph $G = K_n$ $(n \ge 3)$, $\gamma_{te}^+(G) = 2$.

Proof.

Let S be any set of two adjacent edges of K_n . Since each edge of K_n is incident with an edge of S, it follows that S is a total edge dominating set of G so that $\gamma_{te}(G) = 2$. We show that $\gamma_{te}^+(G) =$ 2. Suppose that $\gamma_{te}^+(G) \geq 3$. Then there exists a total edge dominating set S_1 such that $|S_1| \geq 3$. It is clear that S_1 contains two adjacent edges say e_1 , e_2 . Then $S_1' = \{e_1, e_2\}$ is a total edge dominating set of G, which is a contradiction. Thus $\gamma_{te}^+(G) = 2$.

Theorem 2. 9

For complete bipartite graph $G = K_{m,n}$ $(m, n \ge 2)$, $\gamma_{te}^+(G) = 2$.

Proof.

Let S be any set of two adjacent edges of $K_{m,n}$. Since each edge of $K_{m,n}$ is incident with an edge of S, it follows that S is a total edge dominating set of G so that $\gamma_{te}(G) = 2$. We show that $\gamma_{te}^+(G) = 2$. Suppose $\gamma_{te}^+(G) \geq 3$. Then there exists a total edge dominating set S_1 such that $|S_1| \geq$ 3. It is clear that S_1 contains two adjacent edges say e_1, e_2 . Then $S_1' = \{e_1, e_2\}$ is a total edge dominating set of G, which is a contradiction. Thus $\gamma_{te}^{+}(G) = 2$.

Theorem 2.10

For any graph $G = K_{1,n}$ $(n \ge 2)$, $\gamma_{te}^+(G) = 2$.

Proof.

The proof is similar to Theorem 2.9. ■

Theorem 2.11

For any integer $a \ge 1$, there exists a connected graph G such that $\gamma_{te}(G) = a + 1$ and $\gamma_{te}^+(G) = 2a.$

Proof.

Let $P_i: u_i, v_i, w_i$ (1 $\leq i \leq a$) be a path of order 3 and $P: x, y$ be a path of order 2. Let G be a graph obtained from P_i ($1 \le i \le a$) and P by joining y with each u_i ($2 \le i \le a$), v_i ($2 \le i \le a$) and w_i ($2 \le i \le a$) and also join x with u_1, v_1 and w_1 . The graph G is shown in Figure 2.

First we claim that $\gamma_{te}(G) = a + 1$. It is easily observed that an edge xy belongs to every minimum total edge dominating set of G and so $\gamma_{te}(G) \geq 1$. Also it is easily seen that every minimum total edge dominating set of G contains at least one edge of each block of $G - \{x\}$ and each block of $G - \{y\}$ and so $\gamma_{te}(G) \ge a + 1$. Now $X = \{xy, xv_1, yv_2, yv_3, ..., yv_a\}$ is a total edge dominating set of G so that $\gamma_{te}(G) = \alpha + 1$.

Next we show that $\gamma_{te}^{+}(G) = 2a$. Now $D = \{xu_1, yu_2, yu_3, \ldots, xu_a, xw_1, yw_2, yw_3, \ldots, yw_a\}$ is a total edge dominating set of G. We show that D is a minimal total edge dominating set of G. Let D' be any proper subset of D. Then there exists at least one edge saye ∈ D such thate $\notin D'$. Suppose that $e = xu_i$ for some $(1 \le i \le a)$, then the edge xw_i $(1 \le i \le a)$ will be isolated in $\langle D' \rangle$. Therefore D' is not a total edge dominating set of G. Now, assume that $e = xw_i$ for some $(1 \le i \le a)$, then the edge xu_i ($1 \le i \le a$) will be isolated in $\langle D' \rangle$ and so D' is not a total edge dominating set of G. Therefore any proper subset of D is not a total edge dominating set of G. Hence D is a minimal total edge dominating set of G and so $\gamma_{te}^+(G) \geq 2a$. We show that $\gamma_{te}^+(G) = 2a$. Suppose that there exists a minimal total edge dominating set T of G such that $|T| \geq 2a + 1$. Then T contains at least three edges of block of $G - \{x\}$ or at least three edges of block of $G - \{y\}$. If T contains at least three edges of $G - \{x\}$, then deleting one edge of $G - \{x\}$ in T, results in T is a total edge dominating set of G, which is a contradiction. If T contains at least three edges $G - \{y\}$, then deleting one edge of $G - \{y\}$ in *T*, results in *T* is a total edge dominating set of *G*, which is a contradiction. Hence $\gamma_{te}^+(G) = 2a$.

∎

Open Problem

For every pair a , bof integers with $2 \le a \le b$, does there exists a connected graph G such that $\gamma_{te}(G) = \alpha$ and $\gamma_{te}^+(G) = b$?

REFERENCES:

- 1. Chartrand G, Zhang P. Introduction to Graph Theory. *McGraw*-*Hill*. *Kala mazoo*. *MI* 2004.
- 2. Arumugam S, Thuraiswamy A. Total Domination in Graphs. *Ars*. *Combin*. 1996; 43(2): 89- 92.
- 3. Cockayne E.J, Dawes R.M, Hedetniemi S.T. Total Domination in Graphs. *Networks*. 1980: 10: 211 - 219.
- 4. Dorbec P, Henning M.A, Mecoy J. Upper Total Domination Versus Upper Paired Domination. *Quaestiones Mathematical*. 2007; 30: 1 - 12.
- 5. Arumugam S, Velammal S. Edge Domination in graphs. *Taiwanese Journal of Mathematics* 1998; 2(2): 173 - 179.
- 6. Devaraj J, Sujin Flower V. The Forcing Total Edge Domination Number of a Graph.*Asian Journal of Applied Research*. 2015: 1(4): 19 - 25.
- 7. Dutton R.D, Brigham R.C, An external Problem for Edge Domination Insensitive Graphs. *Discrete Appl*. *Math.* 1988; 20: 113 - 125.
- 8. Mitchell S, Hedetniemi S.T. Edge domination in trees. *Congr. Numer.* 1977; 19: 489-509.
- 9. Thakkar D.K, Kakrecha B.M. About the Edge Domination Number of the Graphs. *Advances in Theoretical and Applied Mathematic*s. 2016; 11(2): 93-98.
- 10. Vaithya S.K, Pandit R.M. Edge Domination in some path and cycle related graphs. *ISRN Discrete Mathematics.*2014; 1: 1-5.
- 11. Velammal S, Arumugam S. Total Edge Domination in graphs. *Global Journal of* Theoretical and Applied *Mathematical Sciences*. 2012; 2(2): 79 - 89.