

Research article

Available online www.ijsrr.org

ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Square Multiplicative Labeling of Some Standard Graphs

M. Ganeshan^{1*} and M. S. Paulraj²

^{1*}Department of Mathematics, A.M. Jain College, Meenambakkam, Chennai , Tamilnadu , India.
 ²Department of Mathematics, A.M. Jain College, Meenambakkam, Chennai , Tamilnadu , India.

ABSTRACT

G is said to be a Square multiplicative labeling if there exists a bijection $g:V(G) \rightarrow \{1, 2, 3,...,p\}$ such that the induced function $g^* : E(G) \rightarrow N$ given by $g^*(uv) = [g(u)]^2$. $[g(v)]^2$ for every $uv \in E(G)$ are all distinct. A graph which admits Square multiplicative labeling is called Square multiplicative graph. In this paper, we show that the almost bipartite graph and ladder graph admit square multiplicative labeling.

KEYWORDS Almost bipartite graph, Labeling, Ladder graph, Square multiplicative labeling. **AMS SUBJECT CLASSIFICATION (2010):** 05C78.

*Corresponding author

Mr. M. Ganeshan

Assistant professor, Department of Mathematics,

A.M.Jain college, Meenambakkam,

Chennai-600114. Tamilnadu, India.

Email: <u>sivananthan21oct@gmail.com</u> Cell. No: 9171070771.

INTRODUCTION

Labeling ^{4, 7} of graph *G* is the allocation of labels generally represented by integers to edges or vertices or both following certain conditions. There are several types of labeling techniques that have evolved from 1960s, one of the renouned labeling method is square multiplicative labeling^{2,3,5}. In this paper we consider a simple, finite, connected and undirected graph.

Definition

G is said to be a *Square multiplicative labeling* if there exists a bijection $g:V(G) \rightarrow \{1,2, 3,.,p\}$ such that the induced function $g^*: E(G) \rightarrow N$ given by $g^*(uv) = [g(u)]^2 \cdot [g(v)]^2$ for every $uv \in E(G)$ are all distinct. A graph which admits Square multiplicative labeling is called *Square multiplicative graph*.

Definition

An almost-bipartite graph¹ is a non-bipartite graph with the property that the removal of a particular single edge renders the graph bipartite.

Definition

The ladder graph⁶ L_n ($n \ge 2$) is the product graph $P_2 \times P_n$ which contains 2n vertices and 3n-2 edges.

RESULTS

Theorem 1: The Almost bipartite graph $P_m + e$ is square multiplicative.

Proof

Consider the graph $G = P_m + e$, where P_m is the path $u_1u_2u_3...u_m$. Let V_1 and V_2 be the bipartition of the vertex set of G.

of the vertex set of G.

Case-1:When *m* is even $, e = u_1 u_{m-1}$

 $V_1 = \{u_1, u_3, \dots, u_{m-1}\}$ and $V_2 = \{u_2, u_4, \dots, u_m\}.$

Case-2:When *m* is odd , $e = u_1 u_m$

 $V_1 = \{ u_1, u_3, \dots, u_m \}$ and $V_2 = \{ u_2, u_4, \dots, u_{m-1} \}.$

For both the cases we define $g: V(G) \rightarrow \{1, 2, 3, \dots, m\}$ by $g(u_r) = r, 1 \le r \le m$.

The function g induces a square multiplicative labeling on G.

For if g^* be the induced function defined by $g^*: E \to N$ such that $g^*(u_r u_s) = r^2 s^2$

Case-1:When *m* is even,
$$e = u_1 u_{m-1}$$

Let $E = E_1 \cup E_2 \cup E_3$ where,

 $E_{1} = \left\{ e_{r} \middle| e_{r} = u_{2r-1} u_{2r}, 1 \leq r \leq \frac{m}{2} \right\},$ $E_{2} = \left\{ e_{r} \middle| e_{r} = u_{2r} u_{2r+1}, 1 \leq r \leq \frac{m}{2} - 1 \right\},$

IJSRR, 8(1) Jan. – Mar., 2019

Since we have only one edge in E_3 , g^* is injective in E_3 .

Claim 4: g^* is injective among E_1 , E_2 and E_3 .

We notice that all the labeling of edges in E_1 and E_2 are multiple of 2^2 and the edge label of E_3 is odd. Hence it is obvious that all the labelings of edges of E_1 and E_2 are distinct from the edge label of E_3 . Now we have to show that labelings of edges in E_1 and E_2 are distinct.

Claim 4.1: g^* is injective among E_1 and E_2 .

Let
$$e_r \in E_1$$
, $e_s \in E_2$
 $g^*(e_r) = g^*(u_{2r-1} u_{2r})$
 $= [g(u_{2r-1})]^2 [g(u_{2r})]^2$
 $= (2r - 1)^2 (2r)^2$
 $g^*(e_r) = 2^2 r^2 (2r - 1)^2$
 $g^*(e_s) = g^*(u_{2s} u_{2s+1})$
 $= [g(u_{2s})]^2 [g(u_{2s+1})]^2$
 $= (2s)^2 (2s + 1)^2$
 $g^*(e_s) = 2^2 s^2 (2s + 1)^2$

Hence for $r \neq s$, $g^{*}(e_r) \neq g^{*}(e_s)$

Hence g^* is injective in E_1 and E_2 .

 \Rightarrow All the edge labels in *E* are distinct ,when *m* is even.

Hence G admits square multiplicative labeling when m is even.

Hence G is a Square multiplicative Graph when m is even.

Case-2:When *m* is odd $, e = u_1 u_m$

Let $E = E_1 \cup E_2 \cup E_3$ where,

$$E_{1} = \left\{ e_{r} \middle| e_{r} = u_{2r-1} u_{2r}, 1 \leq r \leq \frac{m+1}{2} - 1 \right\},$$

$$E_{2} = \left\{ e_{r} \middle| e_{r} = u_{2r} u_{2r+1}, 1 \leq r \leq \frac{m+1}{2} - 1 \right\},$$

$$E_{3} = \left\{ e = u_{1} u_{m} \right\}.$$

To prove that g^* is injective in E.

Claim 1 : g^* is injective in E_1 .

Let $e_r, e_s \in E_1$

$$g^{*}(e_{r}) = g^{*}(u_{2r-1} u_{2r})$$

= $[g(u_{2r-1})]^{2} [g(u_{2r})]^{2}$
= $(2r - 1)^{2} (2r)^{2}$
 $g^{*}(e_{r}) = 2^{2}r^{2} (2r - 1)^{2}$
 $g^{*}(e_{s}) = g^{*}(u_{2s-1} u_{2s})$

IJSRR, 8(1) Jan. – Mar., 2019

$$= [g(u_{2s-1})]^{2} [g(u_{2s})]^{2}$$

$$= (2s - 1)^{2}(2s)^{2}$$

$$g^{*}(e_{s}) = 2^{2}s^{2} (2s - 1)^{2}$$

Hence for $r \neq s$, $g^{*}(e_{r}) \neq g^{*}(e_{s})$
Hence g^{*} is injective in E_{1} .
We find that all the labeling of edges in E_{1} are multiples of 2^{2} .
Claim 2 : g^{*} is injective in E_{2} .
Let $e_{r}, e_{s} \in E_{2}$

$$g^{*}(e_{r}) = g^{*}(u_{2r}u_{2r+1})$$

$$= [g(u_{2r})]^{2} [g(u_{2r+1})]^{2}$$

$$= (2r)^{2} (2r + 1)^{2}$$

$$g^{*}(e_{r}) = 2^{2}r^{2} (2r + 1)^{2}$$

$$g^{*}(e_{s}) = g^{*}(u_{2s}u_{2s+1})$$
$$= [g(u_{2s})]^{2} [g(u_{2s+1})]^{2}$$
$$= (2s)^{2} (2s+1)^{2}$$
$$g^{*}(e_{s}) = 2^{2}s^{2} (2s+1)^{2}$$

Hence for $r \neq s$, $g^*(e_r) \neq g^*(e_s)$. Hence g^* is injective in E_2 .

We observe that all the labelings of edges in E_2 are multiples of 2^2 .

Claim 3 : g^* is injective in E_3 .

Let $e \in E_3$

$$g^{*}(e) = g^{*}(u_{1}u_{m})$$
$$= [g(u_{1})]^{2} [g(u_{m})]^{2}$$
$$g^{*}(e) = (1)^{2} (m)^{2}$$

Since we have only one edge in E_3 , g^* is injective in E_3 .

Claim 4: g^* is injective among E_1 , E_2 and E_3 .

We notice that all the labeling of edges in E_1 and E_2 are multiple of 2^2 and the edge label of E_3 is odd. Hence it is obvious that all the labelings of edges of E_1 and E_2 are distinct from the edge label of E_3 . Now we have to show that labelings of edges in E_1 and E_2 are distinct.

Claim 4.1: g^* is injective among E_1 and E_2 .

Let
$$e_r \in E_1$$
, $e_s \in E_2$
 $g^*(e_r) = g^*(u_{2r-1} u_{2r})$
 $= [g(u_{2r-1})]^2 [g(u_{2r})]^2$
 $= (2r - 1)^2 (2r)^2$

$$g^{*}(e_{r}) = 2^{2}r^{2} (2r - 1)^{2}$$

$$g^{*}(e_{s}) = g^{*}(u_{2s}u_{2s + 1})$$

$$= [g(u_{2s})]^{2} [g(u_{2s+1})]^{2}$$

$$= (2s)^{2} (2s + 1)^{2}$$

$$g^{*}(e_{s}) = 2^{2}s^{2} (2s + 1)^{2}$$
Hence for $r \neq s$, $g^{*}(e_{r}) \neq g^{*}(e_{s})$
Hence g^{*} is injective in E_{1} and E_{2} .

 \Rightarrow All the edge labels in *E* are distinct ,when *m* is odd .

Hence G admits square multiplicative labeling when m is odd.

 \Rightarrow *G* admits Square multiplicative labeling for both the cases .

Hence G is a Square multiplicative Graph.

Figure 1: Square Multiplicative Labeling Of Almost Bipartite Graph $P_8 + e$.

Figure 2: Square Multiplicative Labeling Of Almost Bipartite Graph $P_7 + e$.

Theorem 2: The Ladder graph L_n is square multiplicative.

Proof:

We have $|V(L_n)| = 2n$ and $|E(L_n)| = 3n - 2$.

Let V_1 and V_2 be the bipartition of the vertex set V where

 $V_{1} = \{ v_{1}, v_{2}, \dots, v_{n} \} \text{ and } V_{2} = \{ u_{1}, u_{2}, \dots, u_{n} \}.$ Let $E = E_{1} \cup E_{2} \cup E_{3}$ where, $E_{1} = \{ e_{r} | e_{r} = v_{r} v_{r+1}, 1 \leq r \leq n-1 \},$ $E_{2} = \{ e_{r} | e_{r} = u_{r} u_{r+1}, 1 \leq r \leq n-1 \},$ $E_{3} = \{ e_{r} | e_{r} = v_{r} u_{r}, 1 \leq r \leq n \}.$ Define $g: V(G) \rightarrow \{ 1, 2, 3, \dots, 2n \}$ by $g(v_r) = 2r - 1, 1 \le r \le n,$ $g(u_r) = 2r, 1 \leq r \leq n$. The function g induces a square multiplicative labeling on G. For if, g^* be the induced function defined by $g^*: E \to N$ such that $g^*(v_r u_s) = (2r-1)^2 (2s)^2$ To prove that g^* is injective in E. *Claim 1* : g^* is injective in E_1 . Let $e_r, e_s \in E_1$ $g^*(e_r) = g^*(v_r v_{r+1})$ $= [g(v_r)]^2 [g(v_{r+1})]^2$ $g^*(e_r) = (2r-1)^2(2r+1)^2$ $g^{*}(e_{s}) = g^{*}(v_{s}v_{s+1})$ $= [g(v_s)]^2 [g(v_{s+1})]^2$ $g^*(e_s) = (2s-1)^2(2s+1)^2$ Hence for $r \neq s$, $g^*(e_r) \neq g^*(e_s)$ Hence g^* is injective in E_1 *Claim 2* : g^* is injective in E_2 . Let $e_r, e_s \in E_1$ $g^{*}(e_{r}) = g^{*}(u_{r}u_{r+1})$ $= [g(u_r)]^2 [g(u_{r+1})]^2$ $g^{*}(e_{r}) = (2r)^{2}(2(r+1))^{2}$ $g^{*}(e_{r}) = (2)^{4}(r(r+1))^{2}$ $g^{*}(e_{s}) = g^{*}(u_{s}u_{s+1})$ $= [g(u_s)]^2 [g(u_{s+1})]^2$ $g^*(e_r) = (2s)^2(2(s+1))^2$ $g^{*}(e_{r}) = (2)^{4}(s(s + 1))^{2}$ Hence for $r \neq s$, $g^*(e_r) \neq g^*(e_s)$ Hence g^* is injective in E_2 We note that all the labelings of edges in E_2 are multiples of 2^4 *Claim 3* : g^* is injective in E_3 . Let $e_r, e_s \in E_3$ $g^*(e_r) = g^*(v_r u_r)$ $= [g(v_r)]^2 [g(u_r)]^2$

$$= (2r - 1)^{2}(2r)^{2}$$

$$g^{*}(e_{r}) = (2)^{2} (2r - 1)^{2}(r)^{2}$$

$$g^{*}(e_{s}) = g^{*}(v_{s}u_{s})$$

$$= [g(v_{s})]^{2} [g(u_{s})]^{2}$$

$$= (2s - 1)^{2}(2s)^{2}$$

$$g^{*}(e_{s}) = (2)^{2}(2s - 1)^{2}(s)^{2}$$
Hence for $r \neq s$, $g^{*}(e_{r}) \neq g^{*}(e_{s})$
Hence g^{*} is injective in E_{3}

We note that all the labelings of edges in E_3 are multiples of 2^2 .

Claim 4: g^* is injective among E_1 , E_2 and E_3 .

We note that all the labelings of edges in E_2 are multiples of 2^4 .

Hence it is very clear that all the edge labels of E_2 are distinct from the edge labels of E_1 and E_3

Also we find that the edge labels of E_3 are are multiples of 2^2 .

Hence all the edge labels of E_3 are distinct from the edge labels of E_1

so all the edge labels in E are distinct .

Hence L_n admits square multiplicative labeling

 \therefore The ladder graph L_n is square multiplicative .

Figure 3:Square Multiplicative Labeling Of Ladder Graph L_7

CONCLUSION

In this paper, the admittance of square multiplicative labeling to a variety of graphs namely almost bipartite graph and ladder graph has been discussed.

For almost bipartite graph two cases are discussed. This concept can be extended for different non-regular graphs.

REFERENCES

- BungeR. C. **, El-ZanatiS. I., O'HanlonW. ***, & Vanden EydenC."On gammalabeling the almost bipartite graph P_m+e" (2012). Ars Combinatoria, 2012; 107: 65– 80.
- Ganeshan.M, Paulraj.M.S, "A note on square multiplicative labeling of graphs", International Journal of Research and Analytical Reviews(IJRAR), November, 2018;5(4); 19-22, E-ISSN 2348-1269, P-ISSN 2349-5138.
- 3. M. Ganeshan, M.S. Paulraj, "square multiplicative labeling on certain graphs", Journal of Emerging Technologies and Innovative Research (JETIR), December, ISSN: 2349-5162, 2018; 5(12): 321-328.
- 4. Harary. F,. Graph Theory, (1969) Addison-Wesley Pub. Comp., Reading, Massachusetts.
- Miruthubashini.S and SenthilAmutha. R, "Square Multiplicative Labeling for Some Graphs", International Journal of Scientific and Innovative Mathematical Research (IJSIMR) June 2016; 4(6): 6-10, ISSN 2347-307X (Print) & ISSN 2347-3142 (Online).
- 6. Ramya. M andMeenakshi. S, "Labeling Techniques of Special Graphs", (2017) International Journalof Pure andAppliedMathematics,Volume116,No.24,93102,ISSN:13118080(printedversion);ISSN:13 14-3395(online version).
- 7. Wallis W.D., "Labeling, A Beginner's Guide to Graph Theory" 2007.