

Research article

Available online www.ijsrr.org

ISSN: 2279–0543

International Journal of Scientific Research and Reviews

A Stability Indicating RP-HPLC Method Development and Validation for the Determination of Combined Tablet Formulation of Amlodipine & Candesartan.

Sushil D. Patil^{*}, Sunil V. Amurutkar and C. D. Upasani

SNJB's (Jain Gurukal) Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad-423101, Maharshtra, India Savitribai Phule University Pune, Pune, Maharshtra, India

ABSTRACT

A stability indicating high Performance Liquid Chromatographic (HPLC) method was developed and validated for the determination of combined tablet formulation of Amlodipine & Candesartan. Chromatographic separation was optimized by RP-HPLC on a Grace C18 (250mm x 4.6ID, Particle size: 5 micron) Software was HPLC Workstation utilizing a mobile phase consisting a Methanol: P. Buffer (pH-3, Adjusted with 0.1% OPA) 80:20 % v/v at a flow rate of 0.8ml/min with UV-3000-M at 244nm. The retention time of Amlodipine & Candesartan was 4.2min and 6.3 min respectively.

Good linearity obtained over the range of 5μ g/ml to 25μ g/ml & 8μ g/ml to 40μ g/ml for Amlodipine & Candesartan. Correlation coefficient was found to be 0.999&0.999 for Amlodipine & Candesartan respectively. The % RSD of precision Amlodipine & Candesartan was found to be 0.54 and 0.60 respectively. The % mean recovery was found to 98.93-99% for Amlodipine and 99.75-99.87% for Candesartan. The results obtained for accuracy, precision, LOD, LOQ and Ruggedness were within the limits. Thus the validated economical method was applied for forced degradation study of Amlodipine & Candesartan tablet.

KEYWORDS: Amlodipine & Candesartan, stress study, HPLC method

*Correspondence author

Sushil D.Patil

Department of Pharmaceutical Chemistry SNJB's (Jain Gurukal) Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad-423101 Savitribai Phule University Pune,Pune ,Maharshtra,India Mobile no-8007827080 E-mail: sushilpharma@rediffmail.com

INTRODUCTION

Hypertension is another name for high blood pressure. It can lead to severe complication and increases the risk of heart disease, stroke and death. Blood Pressure is the force exerted by the blood against the walls of the blood vessels. The pressure depends on the work being done by the heart and the resistance of the blood vessels. Medical guidelines define hypertension as a blood pressure higher than 130 over 80 mm of Hg, according to guidelines issued by the American Heart Association (AHA) in November 2017. Around 85 million people in the United States have high blood pressure. Hypertension and heart disease is global health concerns. The World Health Organization (WHO) suggests that the growth of the processed food industry has impacted the amount of salt in diets worldwide and this plays a role in hypertension. From the literature survey it is clear that UV,UPLC,HPLC&HPTLC single drug as well as in combination of Amlodipine & Candesartan Methods are developed

MATERIALS AND METHODS

Materials

1. Drug sample

Amlodipine Besylate, and Candesartan Cilexetil was kindly supplied as gift samples by Glenmark Pharmaceuticals Ltd., Mumbai. The procured drug standards were standardized by measurement of physical properties like Melting Point, Infrared spectrum and UV absorption spectrum and comparing with the data reported in literature.

2. Chemicals and Reagents

Solvents Methanol used for chromatographic analysis was of HPLC grade purchased from S.D. Fine Chemicals, Mumbai. The water used for HPLC was double distilled assembly (BOROSIL) and passed through a $0.45 \,\mu m$ filter.

All other chemicals and solvents were of AR grade and purchased from S.D. fine chemicals, Mumbai, India. The 0.45 μ Nylon filter papers were purchased from India Pvt. Ltd., Mumbai, India.

RESULTS AND DISCUSSION

Chromatographic Conditions:

Binary Gradient System HPLC on a Grace C18 (250mm x 4.6ID, Particle size: 5 micron) Software was HPLC Workstation utilizing a mobile phase consisting a Methanol: P. Buffer (pH-3, Adjusted with 0.1% OPA) 80:20 % v/v at a flow rate of 0.8ml/min with UV-3000-M at 244nm.

Fig 1: Representative Chromatogram of Amlodipine and Candesartan in Methanol: P. Buffer (pH-3, Adjusted with 0.1% OPA) 80:20 % v/v

METHOD VALIDATION:

The developed Method was validated for linearity, precision, accuracy, ruggedness and is applied for forced degradation studies as per the ICH guidelines. ⁹⁻¹⁰

Linearity:

Linear concentrations of both drugs were prepared and the best fit line was calculated. Wide range calibration was determined by solutions containing $5\mu g/ml$ to $15\mu g/ml$ for Amlodipine and $8\mu g/ml$ to $40\mu g/ml$ Candesartan.

Correlation coefficient was found to be 0.999&0.999 for Amlodipine & Candesartan respectively (fig 2&3)

Sr. No.	Candesartan	Cilexetil	Amlodipine Besylate		
	Concentration (µg/ml)	Area	Concentration (µg/mL)	Area	
1	8	333909	5	161153	
2	16	677818	10	332306	
3	24	1001727	15	493459	
4	32	1335636	20	634612	
5	40	1669545	25	805765	
Equation	y = 41614x +5000		y = 31831x	+8000	
Regression	$R^2 = 0.999$		$R^2 = 0.999$		

Table 1: Linearity data for Amlodipine & Candesartan

Fig 2: Linearity graph for Accuracy and Precision of Candesartan Cilexetil

Fig 3: Linearity graph for Accuracy and Precision and Amlodipine Besylate Limit of Detection (LOD) and Limit of Quantification (LOQ):

The LOD is calculated using the formula 3.3 times σ /s where " σ " is standard deviation of the intercept obtained for calibration curve and "s" is the slope of the calibration curve. Similarly LOQ is calculated using the formula 10 times σ /s. The calculated LOD and LOQ are shown in table 2 &3

Conc (µg/ml)	Area 1	Area 2	Area 3	Avg Area
5	161153	162264	160042	161153
10	332306	336196	337293	335265
15	493459	497756	492249	494488
20	634612	634413	634511	634512
25	805765	806876	804654	805765
Intercept	8000	11269	9817.2	9695.4
slope	9695.4	9695.4	9695.4	31769.67
	1337.34			
	0.138913			
	LOQ	μg/ml)		0.420949

Table 2: Showing LOD & LOQ Results of Amlodipine

Table 3: Showing LOD & LOQ Results of Candesartan

Conc (µg/ml)	Area 1	Area 2	Area 3	Avg Area
8	333909	336721	332964	334531.3
16	677818	676717	678726	677753.7
24	1001727	1010522	1011626	1007958
32	1335636	1354633	1324633	1338301
40	1669545	1678545	1657544	1668545
Intercept	5000	2958.4	12579	6845.8
slope	41614	42020	41188	41607.33
	4138.77			
	0.328259			
	LOQ(μg/ml)		0.994723

PRECISION:

The intraday precision was demonstrated by injecting standard solutions of Amlodipine and Candesartan with 10μ g/ml and 16μ g/ml respectively as per the test procedure (Table 4) & recording the chromatograms of six standard solutions. The % RSD of Amlodipine and Candesartan was found to be 0.97 and 0.67 respectively.

I	Amlodipine (10µg/ml)	Candesartan (16µg/ml)
Sr.No	Area	Area
1	332306	677961
2	336196	675427
3	337293	673224
4	329598	665243
5	339422	676332
6	336543	668376
Mean	335226.3	672760.5
SD	3285.196	4525.161
%RSD	0.979993	0.672626

Table 4: Method Precision data of Amlodipine and Candesartan

Intermediate Precision:

Intermediate precision of the analytical method was determined by performing method precision on in three successive days by different analysts under same experimental condition by injecting six replicate standards preparations was determined and the mean % RSD of Amlodipine and Candesartan with 10µg/ml and 16µg/ml was found to be 0.54 and 0.60 respectively (Table 5).

Amlodipine Area for 10µg/ml				Candesartan (16µg/ml)				
S.No	Day 1	Day 2	Day 3	Avg	Day 1	Day 2	Day 3	Avg
1	332306	332405	323349	329353.3	677961	677818	682412	679397
2	336196	337193	335432	336273.7	675427	676717	668748	673630.7
3	337293	337293	336287	336957.7	673224	678726	672241	674730.3
4	329598	339597	331234	333476.3	665243	669213	669878	668111.3
5	339422	339422	332242	337028.7	676332	685622	674545	678833
6	336543	336543	335344	336143.3	668376	664311	678543	670410
Mean	335226.3	337075.5	332314.7	334872.2	672760.5	675401.2	674394.5	674185.4
SD	3285.196	2381.255	4401.332	2738.179	4525.161	6884.495	4803.337	4092.953
%RSD	0.979993	0.706446	0.731575	0.540174	0.672626	1.019319	0.712244	0.607096

Table 5: Precision Data for Amlodipine and Candesartan

ACCURACY:

Accuracy of the method was established by performing recovery studies according to the ICH guidelines. Spiked samples were prepared by spiking pre-analyzed sample solutions with pure drug at three different concentration levels each in triplicate. Mean percentage recovery values at three different concentrations of the two drugs was calculated. The % mean recovery of Amlodipine (98.93-99%) & Candesartan (99.75-99.87%) at each level was within the limits of 98% and 102% (Table 6)

Accuracy of Amlodipine							
S.No.	Conc.	Calculated	%Recovery	Mean	SD	%RSD	
		Conc.		Recovery			
1.	5	4.89	97.8				
2.	5	4.97	99.4	99	0.864099	0.872827	
3.	5	4.99	99.8				
4.	10	10.1	101				
5.	10	9.8	98	98.93	1.463633	1.479414	
6.	10	9.78	97.8				
7.	15	14.88	99.2				
8.	15	15.12	100.8	99.97	0.65403	0.654183	
9.	15	14.99	99.93				
	-	Ac	curacy of Candesa	artan			
S.No.	Conc.	Calculated	%Recovery	Mean	SD	%RSD	
		Conc.		Recovery			
1.	8	7.98	99.75				
2.	8	8.11	101.375	99.875	1.177037	1.17851	
3.	8	7.88	98.5				
4.	16	15.9	99.375				
5.	16	15.89	99.315	99.77	0.603895	0.605277	
6.	16	16.10	100.625				
7.	24	24.01	100.04				
8.	24	23.86	99.41	99.8	0.278209	0.278766	
9.	24	23.99	99.95				

Table-6: Accuracy of Amlodipine & Candesartan

Ruggedness:

The ruggedness of method for Amlodipine and $(15\mu g/ml)$ and Candesartan $(24\mu g/ml)$ was calculated with six injections of in two batches using two different columns. The % RSD of

ruggedness for Amlodipine was 0.79 with column-1 and 1.0 with column-2 and the % RSD of ruggedness for Candesartan was 0.34 with column-1 and 0.38 with column-2 (Table-7), which is within acceptance limits

	Amlodipine 15µg/ml		Candesarta	n (24µg/ml)
S.NO	Column 1	Column 2	Column 1	Column 2
1	14.88	15.2	24.01	24.12
2	15.12	15.00	23.86	24.01
3	14.99	14.88	23.99	24.01
4	15.01	15.12	23.89	23.86
5	15.10	14.99	24.11	23.99
6	14.78	14.74	23.94	23.86
Mean	14.98	14.98833	23.96667	23.975
± SD	0.119024	0.150379	0.082597	0.091424
%RSD	0.794551	1.003308	0.344632	0.38133
% Accuracy	99.86	99.86	99.83	99.89

Table 7: Showing the results of Ruggedness

Results of Stress Degradation Studies:

Stress degradation studies were performed as per the ICH guidelinesQ1A (R2) Stability Testing of New Drug Substances and Products, using the proposed validated analytical method.(Table 8&9)

Acid Degradation studies:

To 1ml of stock solution Amlodipine and Candesartan, 1ml of Acid 0.1N HCL 60°C (Refluxed for 30 min) from the above solution10 μ l was injected into the system and the chromatograms were recorded to detect the stability of sample. Comparison of the peak area of Amlodipine and Candesartan in stressed condition with that of the zero time samples gave 14.92% & 6.42% degradation respectively. (Figure 4)

Fig 4: Representative Chromatogram of Acid Degradation of Amlodipine and Candesartan

Alkali Degradation Studies:

To 1ml of stock solution of of standard drug and sample Amlodipine and Candesartan, 1ml of Alkali 0.1N NaOH 60°C (Refluxed for 30 min). From the above solution10 μ l was injected into the system and the chromatograms were recorded to detect the stability of sample. Comparison of the peak area of Amlodipine and Candesartan in stressed condition with that of the zero time samples gave 14.22% & 8.90% degradation respectively.(Figure 5)

Fig 5: Representative Chromatogram of Base Degradation of Amlodipine and Candesartan *Oxidative Degradation:*

To 1ml of stock solution of standard drug and sample of Amlodipine and Candesartan, 1ml of 3.0% v/v H₂O₂(room temperature for 24hrs. From the above solution10 µl was injected into the system and the chromatograms were recorded to detect the stability of sample. Comparison of the peak area of Amlodipine and Candesartan in stressed condition with that of the zero time samples gave 13.25% & 8.70% degradation & retention time 3.78min & 501 min.respectively. (Figure 6)

Fig 6: Representative Chromatogram of Peroxide Degradation of Amlodipine and Candesartan *Photo Stability Studies:*

The drug was dissolved in methanol exposed to sunlight for 8hrs. When the stressed sample was analyzed, no degradation was found and hence the exposure time was extended for 24hrs and 48hrs. When stressed sample was analyzed, there was no additional peak found. There were no additional peaks at the same retention time when blank, zero and stressed blank samples analyzed and confirming the formation of no degradation product. Hence it was concluded that the drug was stable under the conditions tested. (Figure 7)

IJSRR, 8(1) Jan. – Mar., 2019

Fig 7: Representative Chromatogram of Photolytic Degradation of Amlodipine and Candesartan

Wet heat degradation

There was degradation found when the drug was refluxed for 30 min with water at 80°C. When stressed sample was analyzed, there were two additional peaks at the retention time 2.492 min.& 5.88min When blank, zero and stressed blank samples analyzed and confirming the formation of two degradation product. Comparison of the peak area of Amlodipine and Candesartan in stressed condition with that of the zero time samples gave 2.85% &1.2% degradation respectively.(Figure: 8)

Fig 8: Representative Chromatogram of Wet heat Degradation of Amlodipine and Candesartan

Dry heat degradation

Stability of Amlodipine and Candesartan in dry heat was studied by keeping it for 1 hr at 50 °C. When the stressed sample was analyzed, no degradation was found and hence it was decided to extended the heating time for 3hrs, 5hrs, 24hrs, 48hrs with increased in temperature 70°C. When the stressed sample was analyzed, there was no additional peak found. Also the comparison between the peak areas of stressed sample of Amlodipine and Candesartan with that of zero time sample showed no difference, indicating that there was no degradation. Hence it was concluded that the drug was stable under the conditions tested. (Figure: 9)

Fig 9: Representative Chromatogram of Dry heat Degradation of Amlodipine and Candesartan

	Table 8. Results of stress degradation studies of Amlodipine							
Sr. No.	Stress Condition	Drug peak area at zero time sample (mcV.sec)	Drug peak area of stressed sample (mc.V.sec)	Retention time(s) of degradation products (min)	% Degradation			
1	Acid 0.1N HCL 60°C (Refluxed for 30 min)	1381133	1174963	2.883	14.92%			
2	Alkali 0.1N NaOH 60°C (Refluxed for 30 min)	1198700	1028215	2.617,3.52	14.22%			
3	Wet heat 80°C for 30min	1198764	1164511	2.492	2.85%			
4	Oxidative 3.0% v/v H ₂ O ₂ (room temperature for 24hrs	1198623	1039727	3.78	13.25%			
5	Dry heat 70°C(kept in oven for 30min)	1384411	1384423	No Degradation	No Degradation			
6	Photolytic (exposed to sunlight for 24 hrs)	1342256	1355155	No Degradation	No Degradation			

Table 9. Results of stress degradation studies of Candesartan

Sr. No.	Stress Condition	Drug peak area at zero time sample (mcV.sec)	Drug peak area of stressed sample (mc.V.sec)	Retention time(s) of degradation products (min)	% Degradation
1	Acid 0.1N HCL 60°C (Refluxed for 30 min)	2433541	2277226	3.87	6.42 %
2	Alkali 0.1N NaOH 60°C (Refluxed for 30 min)	21884582	1948282	3.24	8.90%
3	Wet heat 80°C for 30min	21753542	21482822	5.88	1.2%
4	Oxidative 3.0% v/v H ₂ O ₂ (room temperature for 24hrs	21773471	1895025	5.1	8.70%
5	Dry heat 70°C(kept in oven for 30min)	23672453	23753542	No Degradation	No Degradation
6	Photolytic (exposed to sunlight for 24 hrs)	2363782	2372793	No Degradation	No Degradation

Amlodipine and Candesartan undergoes significant degradation in acidic, oxidation, Wet heat and alkaline comparatively

More degradation was found with acid &alkali for Amlodipine and Candesartan. As per ICH guidelines peak purity angle should be less than peak purity threshold. One thing it is observed that wet heat degradation gives the 2.85% for Amlodipine &1.2% for Candesartan where as no degradation in dry heat degradation.

Hence, method of the analysis of Amlodipine and Candesartan in tablet dosage form shows that the degradation product doesn't interfere with the analytical determination. Hence the proposed analytical method is also useful for the determination of Amlodipine and Candesartan stability in sample of pharmaceutical dosage form.

CONCLUSION

A simple, precise, accurate, robust & cost-effective method was developed for the routine analysis. The method was successfully validated in terms of linearity, precision, accuracy as per ICH guidelines. The method provides a linear response across a wide range of concentrations. Present method is giving the future scope for researchers that to identified degradation to develop method for impurity profiling. Hence it can be concluded that the proposed method was a good approach for obtaining reliable results & found to be suitable for the routine analysis and quality control and percentage degradation of pharmaceutical preparations containing these drugs either individually or in combination.

ACKNOWLEDGMENT:

The authors are thankful to the management and trustees of Mumbai Educational Trust's Bhujbal Knowledge City, Nashik, for providing necessary chemicals and analytical facilities and to Glenmark Pharmaceutical Pvt. Ltd. Mumbai, India, for providing pharmaceutical grade Amlodipine and Candesartan as gift sample.

CONFLICT OF INTEREST:-No

REFERENCE

- 1. M.Bindu and G. Kumaraswamy Method Development and Validation of simultaneous estimation of Amlodipine and Candesartan by RP-HPLC in Tablet dosage forms.Indo American J Pharm Reach .2014; 4(10):3922-3928
- 2. Maria Totan et. al The simultaneous determination of candesartan, amlodipine and hydrochlorothiazide by high-performance liquid chromatography, from a mixture and pharmaceutical formulations. in Farmacia; 2016; 64(4): 612-618

- 3. Syeda Kulsum et.al Development and validation of RP-HPLC method for Estimation of candesartan from tablet dosage form2014; 3(4):781-786
- B.Kotecha and M. Pambhar Q-absorbance ratio spectrophotometer method for the Simulteneous estimation of Amlodipine Besylate and Candesartan Cilexetil in synthetic mixture. Pharmatutor Magazine, 2014; 2(5): 167-178
- R.Khaire and J. Landge. Method Development and Validation of Candesartan by RP-HPLC Int J Pharm P'ceutical Reach. 2016; 6(3):345-360
- 6. Katiyar Manoj Kumar et.al Specific and Stability Indicating Assay Method of Cadesartan Cilexetil in Presence of Process and Degradation Impurities IJPI, 2012; 2(5): 1-10
- 7. Raja B, Lakshmana Rao A RP-HPLC method for simultaneous estimation of Candesartan and Amlodipine in bulk and pharmaceutical dosage forms IJRPB 2014; 2(4): 1240-1245
- 8. Kavitha Kotthireddy and B. Rama Devi Stability indicating RP-HPLC method development and validation for the simultaneous estimation of candesartan cilexetil and hydrochlorothiazide in bulk and tablet dosage form Der Pharmacia Lettre, 2015; 7(12): 114-121
- ICH Harmonized Triplicate Guidelines, "Validation of analytical procedures: text and methodology, Q2 (R1)," in International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, 2005.
- International Conference of Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use, Validation of Analytical Procedures: Methodology, Adopted in Geneva 1996.
- 11. Bakshi, M., and Singh, S., Development of validated stability-indicating assay methods critical review. Journal of Pharmaceutical and Biomedical Analysis, 2002; 28(6): 1011-1040.
- 12. Klick S., et al., Toward a Generic Approach for Stress Testing of Drug Substances and Drug Products. Journal of Pharmaceutical and Biomedical Analysis, 2005; 48-66.
- 13. Reynolds, D.W., et al., Available Guidance and Best Practices for Conducting Forced Degradation Studies. Pharmaceutical Technology, 2002; 48-56.
- 14. Sethi, P.D., et al., High Performance Liquid Chromatography. New Delhi: CBS publisher and distributors, 2006; 3-212.
- 15. M. V. V. N. Murali Krishna et.al New Stability Indicating Method for the Simultaneous Determination of Impurities Present in Candesartan Cilexetil and Hydrochlorothiazide Tablets by Ultra Performance Liquid Chromatography with Photo Diode Array Detector. Eurasian J Anal Chem 2017;12(2):127–149
- 16. Ambekar a. M &, kuchekar B. S. Application of A Validated Stability-Indicating HPTLC Method For Simultaneous Quantitative Determination of Candesartan Cilexetil aAnd

Hydrochlorothiazide In Pharmaceutical Dosage Form. Int J Pharm Pharm Sci, 2016; 8(5): 151-157

- 17. Sushil D. Patil, Rohan Badhan, Sanjay Kshirsagar Development& validation of Q-Absorbance UV-Spectrometric Method for Simulatenous estimation of Amlodipine Besylate & Candesartan Cilexetil in bulk drugs. Asian Journal of Pharmaceutical Analysis 2018; 8(1): 53-57
- 18. Sushil D Patil, Sunil V Amurutkar, C D Upasani Simultaneous Estimation of Amlodipine and Azilsartan in Human Plasma by Reverse Phase HPLC for Pharmokinetic Studies Inventi Rapid:Pharm. Analysis & Quality Assurance 2018; (3): 1-11