Intematianal J amal of Sientific Reserchand Reiens

An Integral Representation of Bicomplex Dirichlet Series

Jogendra Kumar
Dept. of Mathematics, Govt. Degree College, Raza Nagar, Swar(Rampur) -244924, India

ABSTRACT

In this paper, we have defined the Bicomplex Dirichlet Series $f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \xi}$ and investigate its region of convergence. We have also obtained an integral representation of Bicomplex Dirichlet Series $f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \xi}$.

KEYWORDS: Bicomplex numbers, Bicomplex Gamma Function, Bicomplex Riemann Zeta Function, Complex Dirichlet Series, Euler Product
2010 AMS SUBJECT CLASSIFICATION: $11 \mathrm{~F} 66,30 \mathrm{G} 35,32 \mathrm{~A} 30,32 \mathrm{~A} 10,13 \mathrm{~A} 18$.

*Corresponding author

Dr. Jogendra Kumar

Department of Mathematics,
Govt. Degree College,
Raza Nagar, Swar, Rampur(UP) - 244924, INDIA.
Email:jogendra.ibs@gmail.com, Mob No - 9412315836

1. INTRODUCTION

The set of Bicomplex Numbers defined as:

$$
C_{2}=\left\{x_{1}+i_{1} x_{2}+i_{2} x_{3}+i_{1} i_{2} x_{4}: x_{1}, x_{2}, x_{3}, x_{4} \in C_{0}, i_{1} \neq i_{2} \text { and } i_{1}^{2}=i_{2}^{2}=-1, i_{1} i_{2}=i_{2} i_{1}\right\}
$$

Throughout this paper, the sets of complex and real numbers are denoted by C_{1} and C_{0}, respectively. For details of the theory of Bicomplex numbers, we refer to ${ }^{\mathbf{1 , 2 , 3 , 4}}$. We shall use the notations $C\left(i_{1}\right)$ and $C\left(i_{2}\right)$ for the following sets: $\mathrm{C}\left(\mathrm{i}_{1}\right)=\left\{\mathrm{u}+\mathrm{i}_{1} \mathrm{v}: \mathrm{u}, \mathrm{v} \in \mathrm{C}_{0}\right\} ; \mathrm{C}\left(\mathrm{i}_{2}\right)=\left\{\alpha+\mathrm{i}_{2} \beta: \alpha, \beta \in \mathrm{C}_{0}\right\}$

1.1 Idempotent Elements:

Besides 0 and 1, there are exactly two non - trivial idempotent elements in C_{2}, denoted as e_{1} and e_{2} and defined as $e_{1}=\frac{1+i_{1} i_{2}}{2}$ and $e_{2}=\frac{1-i_{1} i_{2}}{2}$. Note that $e_{1}+e_{2}=1$ and $e_{1} e_{2}=e_{2} e_{1}=0$.

1.2 Cartesian Idempotent Set:

$$
\begin{aligned}
& \left.\mathrm{C}_{2}=\mathrm{C}\left(\mathrm{i}_{1}\right) \times{ }_{\mathrm{e}} \mathrm{C}\left(\mathrm{i}_{1}\right)=\mathrm{C}\left(\mathrm{i}_{1}\right) \mathrm{e}_{1}+\mathrm{C}\left(\mathrm{i}_{1}\right) \mathrm{e}_{2}=\left\{\xi \in \mathrm{C}_{2}: \xi={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2},{ }^{1} \xi,{ }^{2} \xi\right) \in \mathrm{C}\left(\mathrm{i}_{1}\right) \times \mathrm{C}\left(\mathrm{i}_{1}\right)\right\} \\
& \mathrm{C}_{2}=\mathrm{C}\left(\mathrm{i}_{2}\right) \times_{e} \mathrm{C}\left(\mathrm{i}_{2}\right)=\mathrm{C}\left(\mathrm{i}_{2}\right) \mathrm{e}_{1}+\mathrm{C}\left(\mathrm{i}_{2}\right) \mathrm{e}_{2}=\left\{\xi \in \mathrm{C}_{2}: \xi=\xi_{1} \mathrm{e}_{1}+\xi_{2} \mathrm{e}_{2},\left(\xi_{1}, \xi_{2}\right) \in \mathrm{C}\left(\mathrm{i}_{2}\right) \times \mathrm{C}\left(\mathrm{i}_{2}\right)\right\}
\end{aligned}
$$

1.3 Idempotent Representation Of Bicomplex Numbers:

(I) $\mathrm{C}\left(\mathrm{i}_{1}\right)$ - idempotent representation of Bicomplex Number Throughout this paper $\mathrm{C}\left(\mathrm{i}_{1}\right)$-idempotent representation of Bicomplex Number is given by

$$
\begin{aligned}
\xi & =\left(x_{1}+i_{1} x_{2}\right)+i_{2}\left(x_{3}+i_{1} x_{4}\right)=z_{1}+i_{2} z_{2}=\left(z_{1}-i_{1} z_{2}\right) e_{1}+\left(z_{1}+i_{1} z_{2}\right) e_{2} \\
& =\left[\left(x_{1}+x_{4}\right)+i_{1}\left(x_{2}-x_{3}\right)\right] e_{1}+\left[\left(x_{1}-x_{4}\right)+i_{1}\left(x_{2}+x_{3}\right)\right] e_{2}={ }^{1} \xi e_{1}+{ }^{2} \xi e_{2}
\end{aligned}
$$

(II) $\mathrm{C}\left(\mathrm{i}_{2}\right)$ - idempotent representation of Bicomplex Number Throughout this paper $\mathrm{C}\left(\mathrm{i}_{2}\right)$-idempotent representation of Bicomplex Number is given by

$$
\begin{aligned}
\xi & =\left(x_{1}+i_{2} x_{3}\right)+i_{1}\left(x_{2}+i_{2} x_{4}\right)=w_{1}+i_{1} w_{2}=\left(w_{1}-i_{2} w_{2}\right) e_{1}+\left(w_{1}+i_{2} w_{2}\right) e_{2} \\
& =\left[\left(x_{1}+x_{4}\right)-i_{2}\left(x_{2}-x_{3}\right)\right] e_{1}+\left[\left(x_{1}-x_{4}\right)+i_{2}\left(x_{2}+x_{3}\right)\right] e_{2}=\xi_{1} e_{1}+\xi_{2} e_{2}
\end{aligned}
$$

1.4 Singular Elements:

Non zero singular elements exist in C_{2}. In fact, a Bicomplex number $\xi=\mathrm{z}_{1}+\mathrm{z}_{2} \mathrm{i}_{2}$ is singular if and only if $\left|z_{1}^{2}+z_{2}^{2}\right|=0$. Set of all singular elements in C_{2} is denoted as O_{2}.

1.5 Norm:

The norm in C_{2} is defined as

$$
\|\xi\|=\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right\}^{2 / 2}=\left[\frac{|1 \xi|^{2}+\left|\left.\right|^{2} \xi\right|^{2}}{2}\right]^{1 / 2}=\left[x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right]^{1 / 2}
$$

C_{2} becomes a modified Banach algebra, in the sense that $\xi, \eta \in C_{2}$, we have, in general,

$$
\|\xi \cdot \eta\| \leq \sqrt{2}\|\xi\|\|\eta\|
$$

1.6 Complex Dirichlet Series ${ }^{5,6,7}$:

In general, a Dirichlet series is a series of the form

$$
\begin{equation*}
f(s)=\sum_{n=1}^{\infty} a_{n} e^{-\lambda_{n} s} \tag{1.1}
\end{equation*}
$$

where $\left\{\lambda_{n}\right\}$ is a monotonically increasing and unbounded sequence of real numbers, and $s=\sigma+i t$ is a complex variable. When the sequence $\left\{\lambda_{n}\right\}$ of exponent is to be emphasized, such a series is called a Complex Dirichlet series of type λ_{n}.

If $\lambda_{\mathrm{n}}=\mathrm{n}$, then $\mathrm{f}(\mathrm{s})$ is a power series in $\mathrm{z}=\mathrm{e}^{-\mathrm{s}}$. If $\lambda_{\mathrm{n}}=\log \mathrm{n}$, then

$$
\begin{equation*}
f(s)=\sum_{n=1}^{\infty} a_{n} n^{-s} \tag{1.2}
\end{equation*}
$$

is called an Ordinary complex Dirichlet series.

2. BICOMPLEX DIRICHLET SERIES:

The Bicomplex Dirichlet series is defined as

$$
\begin{equation*}
f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \xi} \tag{2.1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence of bicomplex numbers, $\left\{\lambda_{n}\right\}$ is a strictly monotonically increasing and unbounded sequence of positive real numbers and $\xi \in C_{2}$ is a bicomplex variable. If $\lambda_{n}=n$, then $f(\xi)=\sum_{n=1}^{\infty} \alpha_{n}\left(e^{-\xi}\right)^{n}$ is a power series in $e^{-\xi}$. If $\lambda_{n}=\log n$, then

$$
\begin{equation*}
f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} n^{-\xi} \tag{2.2}
\end{equation*}
$$

is a Ordinary Bicomplex Dirichlet Series.
If $\alpha_{\mathrm{n}}=1$ in equation (3.2) $\mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{-\xi}$ represent Bicomplex Riemann Zeta Function ${ }^{\mathbf{8}, \text {, }, 10,11}$ in that consequence we named $f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} n^{-\xi}$ a Generalized Bicomplex Riemann Zeta Function ${ }^{12,13,14}$. Note that,

$$
\begin{aligned}
& \alpha_{n} e^{-\lambda_{n} \xi}=\left({ }^{1} \alpha_{n} e^{-\lambda_{n}{ }^{1} \xi}\right) e_{1}+\left({ }^{2} \alpha_{n} e^{-\lambda_{n}{ }^{2} \xi}\right) e_{2} \\
& \Rightarrow \sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \xi}=\left[\sum_{n=1}^{\infty}{ }^{1} \alpha_{n} e^{-\lambda_{n}{ }^{1} \xi}\right] e_{1}+\left[\sum_{n=1}^{\infty}{ }^{2} \alpha_{n} e^{-\lambda_{n}{ }^{2} \xi}\right] e_{2}
\end{aligned}
$$

Now we denote the sum function of the series $\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \xi}, \sum_{n=1}^{\infty}{ }^{1} \alpha_{n} e^{-\lambda_{n}{ }^{1} \xi}$ and $\sum_{n=1}^{\infty}{ }^{2} \alpha_{n} e^{-\lambda_{n}{ }^{2} \xi}$ by $f(\xi),{ }^{1} f\left({ }^{1} \xi\right)$ and ${ }^{2} f\left({ }^{2} \xi\right)$ respectively.
Thus $f(\xi)={ }^{1} f\left({ }^{1} \xi\right) e_{1}+{ }^{2} f\left({ }^{2} \xi\right) e_{2}$
Then $f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \xi}$ is a Bicomplex Dirichlet series and ${ }^{1} f\left({ }^{1} \xi\right)=\sum_{n=1}^{\infty} \alpha_{n} n^{-\lambda_{n}{ }^{1} \xi},{ }^{2} f\left({ }^{2} \xi\right)=\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n}{ }^{2} \xi}$ are Complex Dirichlet series. Throughout, we denote the abscissae of convergence of ${ }^{1} f\left({ }^{1} \xi\right)=\sum_{n=1}^{\infty} \alpha_{n} \alpha^{-\lambda_{n}{ }^{1} \xi}$ and ${ }^{2} \mathrm{f}\left({ }^{2} \xi\right)=\sum_{\mathrm{n}=1}^{\infty}{ }^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}}{ }^{2} \xi}$ by σ_{1} and σ_{2}, and the abscissae of absolute convergence by $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$, respectively.
THEOREM 2.1: A Bicomplex Dirichlet series $\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \xi}$ converges for $\xi=\xi_{0}$ iff $\sum_{n=1}^{\infty}{ }^{1} \alpha_{n} \mathrm{e}^{-\lambda_{n}{ }^{1} \xi}$ converges for ${ }^{1} \xi={ }^{1} \xi_{0}$ and $\sum_{\mathrm{n}=1}^{\infty}{ }^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}}{ }^{2} \xi}$ converges for ${ }^{2} \xi={ }^{2} \xi_{0}$.

THEOREM 2.2: If $\mathrm{f}(\xi)=\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{n} \xi}$ converges for $\xi=\xi_{0}$ then $\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{n} \xi}$ converges in the region

$$
\begin{aligned}
\{\xi & \left.\in \mathrm{C}_{2}: \operatorname{Re}\left({ }^{1} \xi\right)>\operatorname{Re}\left({ }^{1} \xi_{0}\right) \text { and } \operatorname{Re}\left({ }^{2} \xi\right)>\operatorname{Re}\left({ }^{2} \xi_{0}\right)\right\} \\
& =\left\{\xi \in \mathrm{C}_{2}: \mathrm{x}_{1}+\mathrm{x}_{4}>\mathrm{x}_{1}^{0}+\mathrm{x}_{4}^{0} \text { and } \mathrm{x}_{1}-\mathrm{x}_{4}>\mathrm{x}_{1}^{0}-\mathrm{x}_{4}^{0}\right\}
\end{aligned}
$$

or equivalently in the region
$\left\{\xi \in C_{2}: \operatorname{Re}\left(z_{1}\right)>\operatorname{Re}\left(z_{1}^{0}\right)\right.$ and $\left.\left|\operatorname{Im}\left(z_{2}\right)-\operatorname{Im}\left(z_{2}^{0}\right)\right|<\operatorname{Re}\left(z_{1}\right)-\operatorname{Re}\left(z_{1}^{0}\right)\right\}$.
COROLLARY 2.1: If $\sum_{n=1}^{\infty} \alpha_{n} \mathrm{e}^{-\lambda_{n} \xi}$ diverges for $\xi=\xi_{0}$ then $\sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{n} \xi}$ diverges in the region $\left\{\xi \in \mathrm{C}_{2}: \operatorname{Re}\left({ }^{1} \xi\right)<\operatorname{Re}\left({ }^{1} \xi_{0}\right)\right.$ and $\left.\operatorname{Re}\left({ }^{2} \xi\right)<\operatorname{Re}\left({ }^{2} \xi_{0}\right)\right\}$
$=\left\{\xi \in C_{2}: x_{1}+x_{4}<x_{1}^{0}+x_{4}^{0}\right.$ and $\left.x_{1}-x_{4}<x_{1}^{0}-x_{4}^{0}\right\}$
or equivalently in the region
$\left\{\xi \in C_{2}: \operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{1}^{0}\right)\right.$ and $\left.\left|\operatorname{Im}\left(z_{2}\right)-\operatorname{Im}\left(z_{2}^{0}\right)\right|>\operatorname{Re}\left(z_{1}\right)-\operatorname{Re}\left(z_{1}^{0}\right)\right\}$.
THEOREM 2.3: The Bicomplex Dirichlet series $f(\xi)=\sum_{n=1}^{\infty} \alpha_{n} e^{-\lambda_{n} \xi}$ converges in the region $\mathrm{R}=\left\{\xi \in \mathrm{C}_{2}: \operatorname{Re}\left({ }^{1} \xi\right)>\sigma_{1}\right.$ and $\left.\operatorname{Re}\left({ }^{2} \xi\right)>\sigma_{2}\right\}$.

3. AN INTEGRAL REPRESENTATION OF BICOMPLEX DIRICHLET SERIES:

DEFINITION 3.1:

$\operatorname{Let}[\mathrm{a}, \mathrm{b}]$ be an interval in C_{0}. A curve C in C_{2} is a mapping $\zeta:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{C}_{2}$. The trace of C is the set $\left\{\zeta(\mathrm{t}) \in \mathrm{C}_{2}: \mathrm{t} \in[\mathrm{a}, \mathrm{b}]\right\}$.
THEOREM 3.1 ${ }^{\mathbf{1 5}}$: Let $\phi: \mathrm{X} \rightarrow \mathrm{C}_{2}$ be a continuous function, and let γ be a curve defined by mapping $\zeta:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{X}$. If γ has continuous derivative $\zeta^{\prime}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{C}_{2}$, then

$$
\int_{\gamma} \phi(\zeta(\mathrm{t})) \mathrm{d} \zeta(\mathrm{t})=\int_{\mathrm{a}}^{\mathrm{b}} \phi[\zeta(\mathrm{t})] \zeta^{\prime}(\mathrm{t}) \mathrm{dt}
$$

BICOMPLEX INTEGRALS AND THE IDEMPOTENT REPRESENTATION:

Let X be domain in C_{2} and let $f: X \rightarrow C_{2}, f(\zeta)={ }^{1} f\left({ }^{1} \zeta\right) e_{1}+{ }^{2} f\left({ }^{2} \zeta\right) e_{2}$ be a holomorphic function. Let γ be a curve $\zeta(\mathrm{t})=\mathrm{z}_{1}(\mathrm{t})+\mathrm{i}_{2} \mathrm{z}_{2}(\mathrm{t}), \mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$ whose trace is in X , so that $\zeta(\mathrm{t})={ }^{1} \zeta(\mathrm{t}) \mathrm{e}_{1}+{ }^{2} \zeta(\mathrm{t}) \mathrm{e}_{2}$, shows that there are curves γ_{1} and γ_{2}, with traces in X_{1} and X_{2} respectively, such that

$$
\begin{array}{ll}
\gamma_{1}:^{1} \zeta={ }^{1} \zeta(\mathrm{t}) & \mathrm{a} \leq \mathrm{t} \leq \mathrm{b} \\
\gamma_{2}:^{2} \zeta={ }^{2} \zeta(\mathrm{t}) & \mathrm{a} \leq \mathrm{t} \leq \mathrm{b}
\end{array}
$$

THEOREM 3.2 ${ }^{1}$: Under the above mentioned notations and hypothesis, integrals of f, f_{1} and f_{2} exists on curves γ, γ_{1} and γ_{2} respectively and

$$
\int_{\gamma} f(\zeta) d \zeta=\left[\int_{\gamma_{1}}^{1} f\left({ }^{1} \zeta\right) d\left({ }^{1} \zeta\right)\right] e_{1}+\left[\int_{\gamma_{2}}^{2} f\left({ }^{2} \zeta\right) d\left({ }^{2} \zeta\right)\right] e_{2} .
$$

DEFINITION 3.2 ${ }^{15}$:

$$
\text { Let } \xi={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2} \in \mathrm{C}_{2}, \mathrm{p}=\mathrm{p}_{1} \mathrm{e}_{1}+\mathrm{p}_{2} \mathrm{e}_{2}, \quad \mathrm{p}_{1}, \mathrm{p}_{2} \in \mathrm{C}_{0}^{+} .
$$

We define

$$
\Gamma_{2}(\xi)=\int_{\gamma} \mathrm{e}^{-\mathrm{p}} \mathrm{p}^{\xi-1} \mathrm{dp}
$$

Where γ is a four dimensional curve in C_{2} and $\gamma_{1} \equiv \gamma_{1}\left(\mathrm{p}_{1}\right), \gamma_{2} \equiv \gamma_{2}\left(\mathrm{p}_{2}\right)$ are component curves with traces in A_{1} and A_{2}, such that $\gamma=\gamma_{1} \mathrm{e}_{1}+\gamma_{2} \mathrm{e}_{2}$.

We have obtained the following result regarding the region of convergence of Bicomplex Gamma function.
THEOREM 3.3: Let $\xi=\mathrm{z}_{1}+\mathrm{z}_{2} \mathrm{i}_{2} \in \mathrm{C}_{2}$ with $\operatorname{Re}\left({ }^{1} \xi\right)>0$ and $\operatorname{Re}\left({ }^{2} \xi\right)>0$ then $\Gamma_{2}(\xi)$ converges and $\Gamma_{2}(\xi)=\Gamma\left({ }^{1} \xi\right) \mathrm{e}_{1}+\Gamma\left({ }^{2} \xi\right) \mathrm{e}_{2}$.
Moreover, $\left\{\xi \in \mathrm{C}_{2}: \operatorname{Re}\left({ }^{(} \xi\right)>0\right.$ and $\left.\operatorname{Re}\left({ }^{2} \xi\right)>0\right\}=\left\{\xi \in \mathrm{C}_{2}: \operatorname{Re}\left(\mathrm{z}_{1}\right)>\left|\operatorname{Im}\left(\mathrm{z}_{2}\right)\right|\right\}$.

PROOF: By Def. 3.2 and Th. 3.2

$$
\begin{aligned}
& \Gamma_{2}(\xi)=\int_{\gamma} \mathrm{e}^{-\mathrm{p}} \mathrm{p}^{\xi-1} \mathrm{dp} \\
& =\int_{\gamma}\left(e^{-p_{1}} p_{1}{ }^{1}{ }^{\xi-1} e_{1}+e^{-p_{2}} p_{2}^{\xi-1} e_{2}\right)\left(d_{1} e_{1}+d p_{2} e_{2}\right) \\
& =\left[\int_{0}^{\infty} \mathrm{e}^{-\mathrm{p}_{1}} \mathrm{p}_{1}{ }^{1}{ }^{\xi-1} \mathrm{dp}_{1}\right] \mathrm{e}_{1}+\left[\int_{0}^{\infty} \mathrm{e}^{-\mathrm{p}_{2}} \mathrm{p}_{2}{ }^{2}{ }^{\xi}-1 \mathrm{dp}_{2}\right] \mathrm{e}_{2} \\
& =\Gamma\left({ }^{1} \xi\right) \mathrm{e}_{1}+\Gamma\left({ }^{2} \xi\right) \mathrm{e}_{2}
\end{aligned}
$$

Now, from the theory of the Gamma function of a complex variable, it is well known that the series $\Gamma(\mathrm{s})$ converges in the half-plane $\operatorname{Re}(\mathrm{s})>0$.
Therefore, $\Gamma\left({ }^{1} \xi\right)$ and $\Gamma\left({ }^{2} \xi\right)$ converge, respectively, for $\operatorname{Re}\left({ }^{1} \xi\right)>0$ and $\operatorname{Re}\left({ }^{2} \xi\right)>0$.
Hence, $\Gamma_{2}(\xi)=\Gamma\left({ }^{1} \xi\right) \mathrm{e}_{1}+\Gamma\left({ }^{2} \xi\right) \mathrm{e}_{2}$ converges on $\left\{\xi \in \mathrm{C}_{2}: \operatorname{Re}\left({ }^{1} \xi\right)>0\right.$ and $\left.\operatorname{Re}\left({ }^{2} \xi\right)>0\right\}$.
Now let, $\xi={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2}=\mathrm{z}_{1}+\mathrm{i}_{2} \mathrm{z}_{2}$ and $\mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{i}_{1} \mathrm{x}_{2}, \mathrm{z}_{2}=\mathrm{x}_{3}+\mathrm{i}_{1} \mathrm{x}_{4}$
${ }^{1} \xi=\mathrm{z}_{1}-\mathrm{i}_{1} \mathrm{z}_{2}=\mathrm{x}_{1}+\mathrm{x}_{4}+\mathrm{i}_{1}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)$ and ${ }^{2} \xi=\mathrm{z}_{1}+\mathrm{i}_{1} \mathrm{z}_{2}=\mathrm{x}_{1}-\mathrm{x}_{4}+\mathrm{i}_{1}\left(\mathrm{x}_{2}+\mathrm{x}_{3}\right)$
$\operatorname{Re}\left({ }^{1} \xi\right)=\mathrm{x}_{1}+\mathrm{x}_{4}$ and $\operatorname{Re}\left({ }^{2} \xi\right)=\mathrm{x}_{1}-\mathrm{x}_{4}$
Since $\operatorname{Re}\left({ }^{1} \xi\right)>0$ and $\left.\operatorname{Re}^{2} \xi\right)>0$
$\Leftrightarrow \mathrm{x}_{1}+\mathrm{x}_{4}>0$ and $\mathrm{x}_{1}-\mathrm{x}_{4}>0$
$\Leftrightarrow \mathrm{x}_{1}>-\mathrm{x}_{4}$ and $\mathrm{x}_{1}>\mathrm{x}_{4}$
$\Leftrightarrow \mathrm{x}_{1}>\left|\mathrm{x}_{4}\right|$
$\Leftrightarrow \operatorname{Re}\left(\mathrm{z}_{1}\right)>\left|\operatorname{Im}\left(\mathrm{z}_{2}\right)\right|$
Hence, $\left\{\xi \in \mathrm{C}_{2}: \operatorname{Re}\left({ }^{1} \xi\right)>0\right.$ and $\left.\operatorname{Re}\left({ }^{2} \xi\right)>0\right\}=\left\{\xi \in \mathrm{C}_{2}: \operatorname{Re}\left(\mathrm{z}_{1}\right)>\left|\operatorname{Im}\left(\mathrm{z}_{2}\right)\right|\right\}$.
THEOREM 3.4 ${ }^{15}$: Let $\xi={ }^{1} \xi \mathrm{e}_{1}+{ }^{2} \xi \mathrm{e}_{2}=\mathrm{z}_{1}+\mathrm{z}_{2} \mathrm{i}_{2} \in \mathrm{C}_{2}$ with $\operatorname{Re}\left(\mathrm{z}_{1}\right)>\left|\operatorname{Im}\left(\mathrm{z}_{2}\right)\right|$. Then
$\frac{1}{\Gamma_{2}(\omega)}=\frac{1}{\Gamma\left({ }^{1} \omega\right)} \mathrm{e}_{1}+\frac{1}{\Gamma\left({ }^{2} \omega\right)} \mathrm{e}_{2}$.
Let $\mu_{\mathrm{n}}=\log \lambda_{\mathrm{n}}$ and $\xi \in \mathrm{C}_{2}, \mathrm{p}=\mathrm{p}_{1} \mathrm{e}_{1}+\mathrm{p}_{2} \mathrm{e}_{2}, \quad \mathrm{p}_{1}, \mathrm{p}_{2} \in \mathrm{C}_{0}^{+}$.
Where γ is a four dimensional curve in C_{2} and $\gamma_{1} \equiv \gamma_{1}\left(\mathrm{p}_{1}\right), \gamma_{2} \equiv \gamma_{2}\left(\mathrm{p}_{2}\right)$ are component curves with traces in A_{1} and A_{2}, such that $\gamma=\gamma_{1} \mathrm{e}_{1}+\gamma_{2} \mathrm{e}_{2}$.

THEOREM 3.5: Under the above mentioned notations and hypothesis,

$$
\sum \alpha_{\mathrm{n}} \mathrm{e}^{-\mu_{\mathrm{n}} \xi}=\frac{1}{\Gamma_{2}(\xi)} \int_{\gamma} \mathrm{p}^{\xi-1}\left(\sum \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}}\right) \mathrm{dp}
$$

provided that $\operatorname{Re}\left(\mathrm{Z}_{1}\right)>\left|\operatorname{Im}\left(\mathrm{z}_{2}\right)\right|$ and the series on the left is convergent.
PROOF: Let $\xi=z_{1}+i_{2} z_{2} \in C_{2}$ such that $\operatorname{Re}\left(\mathrm{z}_{1}\right)>\left|\operatorname{Im}\left(\mathrm{z}_{2}\right)\right|$. Then, by Th. 3.4,

$$
\begin{equation*}
\frac{1}{\Gamma_{2}(\xi)}=\frac{1}{\Gamma\left({ }^{1} \xi\right)} \mathrm{e}_{1}+\frac{1}{\Gamma\left({ }^{2} \xi\right)} \mathrm{e}_{2} \tag{3.1}
\end{equation*}
$$

Further due to idempotent techniques,
$p^{\xi-1}=p_{1}{ }^{1}{ }^{\xi-1} e_{1}+p_{2}{ }^{2} \xi-1 e_{2}$
and $\sum \alpha_{n} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}}=\left(\sum^{1} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}}{ }^{1} \mathrm{p}}\right) \mathrm{e}_{1}+\left(\sum^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}}{ }^{2} \mathrm{p}}\right) \mathrm{e}_{2}$
Now, $\mathrm{p}^{\xi-1}\left(\sum \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}}\right)=\mathrm{p}_{1}{ }^{1}{ }^{\xi}-1\left(\sum^{1} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}}{ }^{1} \mathrm{p}}\right) \mathrm{e}_{1}+\mathrm{p}_{2}{ }^{2}{ }^{\xi}-1\left(\sum^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}}{ }^{2} \mathrm{p}}\right) \mathrm{e}_{2}$
$\int_{\gamma} p^{\xi-1}\left(\sum \alpha_{n} e^{-\lambda_{n} p}\right) d p$
$=\int_{\gamma}\left\{p_{1}{ }^{1}{ }^{1}-1\left(\sum^{1} \alpha_{n} \mathrm{e}^{-\lambda_{n}{ }^{1} \mathrm{p}}\right) \mathrm{e}_{1}+\mathrm{p}_{2}{ }^{2}{ }^{\xi}-1\left(\sum^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}}{ }^{2} \mathrm{p}}\right) \mathrm{e}_{2}\right\}\left\{\mathrm{dp}_{1} \mathrm{e}_{1}+\mathrm{dp}_{2} \mathrm{e}_{2}\right\}$
$=\left[\int_{0}^{\infty} \mathrm{p}_{1}{ }^{1} \xi-1\left(\sum^{1} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}_{1}}\right) \mathrm{d} \mathrm{p}_{1}\right] \mathrm{e}_{1}+\left[\int_{0}^{\infty} \mathrm{p}_{2}{ }^{2} \xi^{\xi}-1\left(\sum^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}_{2}}\right) \mathrm{dp}_{2}\right] \mathrm{e}_{2}$
Now by (3.1) and (3.2)

$$
\begin{aligned}
& \frac{1}{\Gamma_{2}(\xi)} \int_{\gamma} \mathrm{p}^{\xi-1}\left(\sum \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}}\right) \mathrm{dp} \\
& =\left[\frac{1}{\Gamma\left({ }^{1} \xi\right)} \mathrm{e}_{1}+\frac{1}{\Gamma\left({ }^{2} \xi\right)} \mathrm{e}_{2}\right] \\
& =\left[\left[\int_{0}^{\infty} p_{1}{ }^{1} \xi-1\left(\sum^{1} \alpha_{n} \mathrm{e}^{-\lambda_{n} p_{1}}\right) d p_{1}\right] \mathrm{e}_{1}+\left[\int_{0}^{\infty} \mathrm{p}_{2}{ }^{2} \xi-1\left(\sum^{2} \alpha_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}_{2}}\right) \mathrm{dp}_{2}\right] \mathrm{e}_{2}\right] \\
& =\left[\frac{1}{\Gamma\left({ }^{1} \xi\right)} \int_{0}^{\infty} p_{1}{ }_{1}{ }_{1} \xi-1\left(\sum^{1} \alpha_{n} e^{-\lambda_{n} p_{1}}\right) d p_{1}\right] e_{1}+\left[\frac{1}{\Gamma\left({ }^{2} \xi\right)} \int_{0}^{\infty} p_{2}{ }^{2} \xi-1\left(\sum^{2} \alpha_{n} e^{-\lambda_{n} p_{2}}\right) d p_{2}\right] e_{2} \\
& =\left[\frac{1}{\Gamma\left({ }^{1} \xi\right)} \sum^{1} \alpha_{\mathrm{n}} \int_{0}^{\infty} \mathrm{p}_{1}{ }^{1}{ }^{\xi-1} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}_{1}} \mathrm{dp}_{1}\right] \mathrm{e}_{1}+\left[\frac{1}{\Gamma\left({ }^{2} \xi\right)} \sum^{2} \alpha_{\mathrm{n}} \int_{0}^{\infty} \mathrm{p}_{2}{ }^{2} \xi-1 \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{p}_{2}} \mathrm{dp}_{2}\right] \mathrm{e}_{2} \\
& \left.=\left[\frac{1}{\Gamma\left({ }^{1} \xi\right)} \sum \frac{{ }^{1} \alpha_{\mathrm{n}}}{\lambda_{\mathrm{n}}{ }^{1 \xi}} \Gamma\left({ }^{1} \xi\right)\right] \mathrm{e}_{1}+\left[\frac{1}{\left.\Gamma{ }^{(}{ }^{(} \xi\right)} \sum \frac{{ }^{2} \alpha_{\mathrm{n}}}{\lambda_{\mathrm{n}}^{2} \xi} \Gamma{ }^{2} \xi\right)\right] \mathrm{e}_{2} \\
& =\left[\sum \frac{\alpha_{n}}{\lambda_{n}^{1 \xi}}\right] e_{1}+\left[\sum \frac{2}{\alpha_{n}} \lambda_{n}^{2 \xi}\right] e_{2}=\sum \frac{\alpha_{n}}{\lambda_{n}^{\xi}}=\sum \alpha_{n} \lambda_{n}^{-\xi}=\sum \alpha_{n} \mathrm{e}^{-\mu_{n} \xi}, \quad\left[\because \mu_{n}=\log \lambda_{n}\right]
\end{aligned}
$$

ACKNOWLEDGMENTS

I am heartily thankful to Mr. Sukhdev Singh, Lovely Prof. Univ., Punjab and all staff of Govt. Degree College, Raza Nagar for their encouragement and support during the preparation of this paper.

REFERENCE

1. Price G. B., "An introduction to multicomplex space and Functions" Marcel Dekker, 1991.
2. Luna-Elizarrarás M.E., Shapiro M., Struppa D.C., Vajiac A.,"Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers" Springer Int. Pub., 2015.
3. Srivastava R. K., "Certain Topological Aspects of Bicomplex Space" Bull. Pure \& Appl. Math, 2008: 222-234.
4. Kumar J.,"On Some Properties of Bicomplex Numbers •Conjugates •Inverse Modulii" Journal of Emerging Technologies and Innovative Res. (JETIR), 2018;5(9):475-499.
5. Hardy G. H. and Riesz M., "The General Theory of Dirichlet Series" Cambridge University Press, 1915.
6. Titchmarsh E. C., "The Theory of functions" Oxford University press, 1960.
7. Apostol T. M., "Introduction to Analytic Number Theory" Springer, 2010.
8. Rochon D., "A Bicomplex Riemann Zeta Function" Tokyo J. of Math., 2004; 27(2):357-369.
9. Kumar J., "A Study of Bicomplex Riemann Zeta Function" M. Phil. Dissertation, Dr. B. R. A. Univ., Agra, 2006.
10. Srivastava R. K. and Kumar J., "A Note on Zeros of the Bicomplex Riemann Zeta Function" Int. J. of Math. Sci. and Eng. Appl. (IJMSEA), 2008; 2(III):163-172.
11. Srivastava R. K. and Kumar J., "A Note on Poles of the Bicomplex Riemann Zeta Function" South East Asian J. Math. \&Math. Sc., 2010; 9(1): 65-75.
12. Kumar J., "A Study of Bicomplex Dirichlet Series" Ph.D. Thesis, Dr. B. R. A. Univ., Agra, 2010.
13. Kumar J., "A Generalized Bicomplex Riemann Zeta Function" VSRD Int. J. of Tech. \& Non-Tech. Res., 2015; VI (VII):193-197.
14. Kumar J., "Bicomplex Dirichlet Series" Emerging Technologies and Innovative Research (JETIR), 2018; 5(10):143-165.
15. Goyal S. P., Mathur T. and Goyal R., "Bicomplex Gamma and Beta Function" Rajasthan Acad. of Phys. Sc., 2006; 5:131-142.
