

Research article Available online www.ijsrr.org ISSN: 2279-0543

International Journal of Scientific Research and Reviews

On The Upper Open Geodetic Domination Number of a Graph

 V ijimon Moni. V^1 and Robinson Chellathurai. S^2

Register Number-12357, ¹St. Xavier's Catholic College of Engineering, Chunkankadai-629 013 2 Scott Christian College, Nagercoil-629 003,India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India

ABSTRACT

Let $G = (V, E)$ be a connected graph of order n. A set $S \subseteq V(G)$ is called an open geodetic dominating set of G if S is both open geodetic set and dominating set of G . The minimum cardinality of an open geodetic dominating set of G is called the open geodetic domination number of G and is denoted by $\gamma_{oa}(G)$. An open geodetic dominating set of minimum cardinality is called γ_{oa} - set of G. An open geodetic dominating set S in a connected graph G is called a minimal open geodetic dominating set of G if no proper subset of S is an open geodetic dominating set of G. The maximum cardinality of a minimalopen geodetic domination set of G is the upper open geodetic domination number of G and is denoted by $\gamma_{og}^+(G)$. A minimal open geodetic dominating set of cardinality $\gamma_{og}^+(G)$ is called a γ_{og}^+ - set of G. The upper open geodetic dominating number of certain classes of graph are determined. Some general properties satisfied by this concept are studied. For any positive integers a and b with $2 \le a \le b$, there exists a connected graph G with $\gamma_{og}(G) = a$ and $\gamma_{og}^+(G) = b$.

KEYWORDS : Open geodetic number, Open geodetic domination number, upper open geodetic dominating number.

AMS Subject Classification: 05C05, 05C69.

***Corresponding author**

Vijimon Moni.V

Register Number-12357, Department of Mathematics St. Xaviers Catholic College of Engineering, Chunkankadai-629 003, Tamilnadu. India. Email:vijimon1983@gmail.com. Mobile: 8946046108.

IJSRR, 8(1) Jan. – Mar., 2019 Page 1877

INTRODUCTION

By a graph $G = (V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to Harary¹⁰. The *distanced*(u, v) between two vertices u and v in a connected graph G is the length of a shortest $u - v$ path in G. An $u - v$ path of length $d(u, v)$ is called an $u - v$ *geodesic*. A vertex x is said to lie on a $u - v$ geodesic P if x is a vertex of P including the vertices u and v. The closed interval consists of x, y and all vertices lying on some $x - y$ geodesic of G^1 . For a non-empty set $S \subseteq V(G)$, the set $I[S] = \bigcup_{x,y \in S} I[x, y]$ is the closure of S. A set $S \subseteq V(G)$ is called a *geodetic set* if $I[S] = V(G)$. Thus every vertex of G is contained in a geodesicjoining some pair of vertices in S . The minimum cardinality of a geodetic set of G is called the *geodetic number* of G and is denoted by $q(G)$. A geodetic set of minimum cardinality is called gset of $G^{2,4,5,6}$. $N(v) = \{u \in V(G) : uv \in E(G)\}$ is called the *neighborhood* of the vertex v in G. A vertex vis anextreme vertex of a graph G if $\langle N(v) \rangle$ is complete. A set of vertices D in a graph G is a *dominating set* if each vertex of G is dominated by some vertex of D. The *domination number* $\gamma(G)$ of G is the minimum cardinality of a dominating set of $G^{3,7}$. If $e = \{u, v\}$ is an edge of a graph G with $d(u) = 1$ and $d(v) > 1$, then we call e a *pendent edge*, u a leaf and v a *support vertex.* Let $L(G)$ be the set of all leaves of a graph G. For any connected graph G, a vertex $v \in$ $V(G)$ is called a *cut vertex* of Gif $V - v$ is no longer connected. A set of vertices S in Gis called a *geodetic dominating* set if S is both a geodetic set and a dominating set. The minimum cardinality of a geodetic dominating set of G is its *geodetic domination number* and is denoted by $\gamma_g(G)$. A geodetic dominating set of size $\gamma_g(G)$ is said to be a γ_g -set of $G^{9,12}$. A set S of vertices of a connected graph G is an *open geodetic set* if for each vertex ν in G either ν is an extreme vertex of G and $v \in S$ or v is an internal vertex of a $x - y$ geodesic for some $x, y \in S$. An *open* geodetic set of minimum cardinality is a minimum open geodetic set and this cardinality is the *open geodetic number* and is denoted by $og(G)^{14}$. A Set $S \subseteq V(G)$ is called an *open geodetic dominating set* of a connected graph G if S is both open geodetic set and dominating set of G . The minimum cardinality of an open geodetic dominating set of G is called *open geodetic domination number* of G and is denoted by $\gamma_{og}(G)^{13}$. An open geodetic dominating set of minimum cardinality is called γ_{og} -set of *G*. For a cut vertex v in a connected graph *G* and the component *H* of $G - v$, the subgraph *H* and the vertex v together with all edges joining v to $V(H)$ is called a *branch* of G at v. The *middle graph* of a graph $G = (V, E)$ is the graph $M(G) = (V \cup E, E')$, Where $uv \in E'$ if and only if either us a vertex of G and ν is an edge of G containing ν , or ν and ν are edges in G having a vertex in common.

The following theorem is used in sequel.

Theorem1.1[13]. Let G be a connected graph of order n . Then

- i. every open geodetic dominating set of a graph G contains its extreme vertices.
- ii. every end vertex belongs to every open geodetic dominating set of G .
- iii. if theset S of extreme vertices of G is a open geodetic dominating set of G, then S is theunique minimum open geodetic dominating set of G and $\gamma_{oa}(G) = |S|$ *.*

THE UPPER OPEN GEODETIC DOMINATION NUMBER OF A GRAPH

Definition 2.1. An open geodetic dominating set S in a connected graph G is called a minimal open geodetic dominating set of G if no proper subset of S is an open geodetic dominating set of G. The maximum cardinality of a minimal open geodetic dominating set of G is the upper open geodetic set domination number of G and is denoted by $\gamma_{og}^+(G)$. A minimal open geodetic dominating set of cardinality $\gamma_{og}^+(G)$ is called a γ_{og}^+ - set of G.

Example2.2. For the graph G given in Figure 1, $S_1 = \{v_1, v_2, v_3, v_6, v_9\}$ and $S_2 = \{v_1, v_2, v_3, v_5, v_6, v_7, v_8, v_8, v_9\}$ v_7, v_9 }are open geodetic dominating sets of G. It is clear that no proper subsets of S_1 and S_2 are open geodetic dominating set of G and so S_1 and S_2 are minimal open geodetic dominating sets of G. Hence $\gamma_{og}(G) = 5$ and $\gamma_{og}^+(G) = 6$. It is clear that there is no minimal open geodetic dominating set of cardinality greater than 6. Therefore

 $\gamma_{og}^+(G) = 6.$

Theorem2.3. Let G be a connected graph of order n . Then

(i) every minimal open geodetic dominating set of a graph G contains its extreme vertices. (ii) every end vertex belongs to every minimal open geodetic dominating set of G.

(iii) if G has the unique minimal open geodetic dominating set, then $\gamma_{og}(G) = \gamma_{og}^+(G)$.

Proof. (i) Since every minimal open geodetic dominating set of connected graph G is a open geodetic dominating set of G , by Theorem 1.1, (i)and (ii) follows immediately.

(iii)Let S be unique minimal open geodetic dominating set of a connected graph G . Then it is clear that $\gamma_{og}(G) = |S|$ and $\gamma_{og}^+(G) = |S|$. Hence $\gamma_{og}(G) = \gamma_{og}^+(G)$.

Theorem 2.4. For the complete graph $G = K_n$, $\gamma_{og}^+(G) = n$.

Proof. Since every vertex of *G* is an extreme vertex, then by Theorem 2.3(i) $\gamma_{og}^+(G) = n$. **Theorem 2.5.** If a connected graph G has m extreme vertices, then $\gamma_{og}^+(G) \geq m$.

Proof. As every minimal open geodetic dominating set of a connected graph G contains its extreme vertices, by Theorem 2.3(i) $\gamma_{og}^+(G) \geq m$.

Theorem2.6. Let $M(G)$ be the middle graph of a connected graph G of order n.

Then $\gamma_{og}(M(G)) = \gamma_{og}^+(M(G)) = n$.

Proof. Let $M(G)$ be the middle graph of a connected graph G of order n. Then it is clear that set of extreme vertices of $M(G)$ is $V(G)$. It is easily verified that $V(G)$ is the unique minimal open geodetic dominating set of $M(G)$. Therefore, by Theorem $2.3(iii)\gamma_{og}(M(G)) = \gamma_{og}^+(M(G)) = n.$

Theorem2.7. Let G be a connected graph of order $n, 2 \leq \gamma_{og}(G) \leq \gamma_{og}^+(G) \leq n$.

Proof. Since every open geodetic dominating set needs at least two vertices, Therefore $\gamma_{og}(G) \geq 2$. Since every minimal open geodetic dominating set is a open geodeticdominating set of

 $G, \gamma_{og}(G) \leq \gamma_{og}^+(G)$. Also since the set of all vertices of G is an open

geodetic dominating set of $G, \gamma_{og}^+(G) \leq n$. Hence $2 \leq \gamma_{og}(G) \leq \gamma_{og}^+(G) \leq n$.

Remark 2.8. The bounds in Theorem 2.7 are sharp. For the path $G = P_2$, $\gamma_{og}(G) = 2$. For the star G $=K_{1,n-1}$, $\gamma_{og}(G) = \gamma_{og}^+(G) = n-1$. For the complete graph, $G = K_n$, $\gamma_{og}(G) = \gamma_{og}^+(G) = n$. Also the bounds in Theorem 2.7 are strict. For the graph G given in Figure 2, $\gamma_{og}(G) = 7$, $\gamma_{og}^+(G) = 8$ and $n = 11$. Thus $2 \leq \gamma_{og}(G) \leq \gamma_{og}^+(G) \leq n$.

Theorem 2.9. For the connected graph $G\gamma_{og}(G) = 2$ if and only if $\gamma_{og}^+(G) = 2$. **Proof.**If $\gamma_{og}^+(G) = 2$, then by Theorem 2.7, $\gamma_{og}(G) = 2$. Conversely, let $\gamma_{og}(G) = 2$. Then G contains two extreme vertices u and v such that $S = \{u, v\}$ is the uniqueminimum γ_{og} -set of G. Since S is subset of every open geodetic dominating set itfollows that $S = \{u, v\}$ is the unique minimal open geodetic dominating set of G, sothat $\gamma_{og}^+(G) = 2$.

Theorem 2.10. Let G be a connected graph of order $n.If_{\gamma_{0}q}(G) = n$, if and only if $\gamma_{\text{og}}^+(G) = n$.

Proof. If $\gamma_{og}(G) = n$, then by Theorem 2.7, $\gamma_{og}^+(G) = n$. Conversely, let $\gamma_{og}^+(G) = n$. Then $S = V(G)$ is the unique minimal open geodetic dominating set of G. Henceit follows that S is the unique minimum open geodetic dominating set of G, so that $\gamma_{og}(G) = n$.

Theorem 2.11. Let G be a connected graph of order n. If $\gamma_{og}(G) = n - 1$, then $\gamma_{og}^+(G) = n - 1$.

Proof. Let $\gamma_{og}(G) = n - 1$. Then by Theorem 2.7, $\gamma_{og}^+(G) = n$ or $n - 1$. If $\gamma_{og}^+(G) = n$, then by Theorem 2.10, $\gamma_{og}(G) = n$, Which is a contradiction. Therefore $\gamma_{og}^+(G) = n - 1$.

Theorem 2.12. For the complete Bipartite graph $G = K_{m,n}$ with $2 \le m \le n, \gamma_{og}^+(G) = 4$.

Proof. Let $G = K_{m,n}$. Let $X = \{u_1, u_2, ..., u_m\}$ and $Y = \{v_1, v_2, ..., v_n\}$ be the partitesets of G. Let $S =$ $\{u_i, u_j, v_r, v_s\}$. Then S is a minimal open geodetic dominating set of G and so $\gamma_{og}^+(G) \geq 4$. We show that $\gamma_{og}^+(G) = 4$. If not, let $\gamma_{og}^+(G) \geq 5$. Then there exists a minimal open geodetic dominating set S' such that $|S'| \ge 5$. If $S' \subseteq X$, then S' is not a open geodetic dominating set of G, Which is a contradiction. If $S' \subseteq Y$, then S' is not a open geodetic dominating set of G, Which is a contradiction. Therefore, $S' \subseteq X \cup Y$. Let $S' = S_1 \cup S_2$, Where $S_1 \subseteq X$ and $S_2 \subseteq Y$. Then $|S_1| \ge 2$ and $|S_2| \ge 2$. Since $|S'| \ge 5$, either S_1 or S_2 contains at least three vertices, without loss of generality let us assume that $|S_1| \geq 3$. Let $x, y, z \in S_1$ and $, v \in S_2$. Then $x, y, z, u, v \in S'$. Let $S'' = S' - \{x\}$, Which is a contradiction to S['] is a minimal open geodetic dominating set of G. Let $S'' = S' - \{x\}$. Then S'' is a open geodetic dominating set of G such that $S''\subset S'$ which is a contradiction to S' is a minimal open geodetic dominating set of G. Therefore $\gamma_{og}^+(G) = 4$.

Theorem2.13. For any connected non-complete graph G of order n, then $\gamma_{og}^+(G) \leq n - \delta(G)$.

Proof. Let S be a upper open geodetic dominating set of a non-complete connectedgraph G order n . Then $\gamma_{og}^+(G) = |S|$. We show that $|S| \leq n - \delta(G)$. Let $v \in S$. Assume that v is adjacent to m distinct vertices in S. Since $deg(v) > \delta(G)$, v mustbe adjacent to atleast $\delta(G) - m$ vertices in $V(G) - S$ and so $|V(G) - S| > \delta(G) - m$. If $m = 0$, then $|V(G) - S| \geq \delta(G)$, that is $|S| \leq$ $|V(G)| - \delta(G) = n - \delta(G)$. If $m > 0$, then the m distinct vertices belong to $N[S]$ and doesnot lie on a geodesicjoining any pair of vertices of S , Since S is a minimal open geodetic dominating set of G, | V (G) − S | ≥ ($\delta(G)$ − m) + m = $\delta(G)$. Hence | S | ≤ n − $\delta(G)$. Therefore $\gamma_{og}^+(G)$ ≤ $n - \delta(G)$.

Remark2.14. The bounds in Theorem 2.13 are sharp. For the graph $G = K_{1,n-1}$ of order *n*. It is clear that $\delta(G) = 1, n - \delta(G) = n - 1$ and $\gamma_{og}^+(G) = n - 1$. Thus $\gamma_{og}^+(G) = n - \delta(G)$. The bounds in Theorem 2.13 can be strict. For the graph G in Figure 3, $\delta(G) = 1, \gamma_{og}^+(G) = 4, n = 6, n$ $\delta(G) = 5$.Thus $\gamma_{og}^+(G) < n - \delta(G)$.

Theorem 2.15. Let G be a connected graph of order n and $u \in V(G)$. If deg(u) = 1, then $\gamma_{og}^+(G$ $u) \leq \gamma_{og}^+(G)$.

Proof. Let $u \in V(G)$ and deg(u) = 1. Let S be a minimal open geodetic dominatingset of $G - u$ with maximum cardinality, so $\gamma_{og}^+(G - u) = |S|$. Since deg(u) = 1, u is an end vertex and u is adjacent to exactly one vertex, say v . By Theorem 2.3 every minimal open geodetic dominating set of G contains u . We consider two cases.

case(i): Let $v \in S$. Since S is an open geodetic dominating set of $G - u$, there exists a vertex $W \in V(G - u)$ such that $W \in I[v, x] \subseteq I[S], w \in N[S], v, x \in I[S]$ and $d(v, x) \leq 3$. If $d(v, x) = 3$, then consider the set $S' = (S - \{v\}) \cup \{u, w\}$. If $d(v, x) \le 2$ then consider the set $S' = (S - \{v\}) \cup \{u\}$. It is straight forward to verify that S' is a minimal open geodetic dominating set of G. So that $\gamma_{og}^+(G - u) = |S| \leq |S'| \leq \gamma_{og}^+(G)$.

case(ii): Let $v \notin S$. Then consider the set $S' = S \cup \{u\}$. It is straight forward toverify that S' is a minimal open geodetic dominating set of G. So that $\gamma_{og}^+(G - u) = |S| < |S'| \leq \gamma_{og}^+(G)$. Hence in both the cases, $\gamma_{og}^+(G - u) \leq \gamma_{og}^+(G)$.

Remark 2.16. The bounds in Theorem 2.15 are sharp. For the graph $G = P_4$, letu be an end vertex of G. It is clear that $\gamma_{og}^+(G - u) = 2$ and $\gamma_{og}^+(G) = 2$. Hence $\gamma_{og}^+(G - u) = \gamma_{og}^+(G)$. The bounds in Theorem 2.16 can be strict. For the graph G in Figure 4, $\gamma_{og}^+(G - u) = 3$ and $\gamma_{og}^+(G) =$ 4. Hence $\gamma_{og}^+(G - u) < \gamma_{og}^+(G)$.

Remark 2.17. The converse of the Theorem 2.15 is need not true. For the completegraph K_n , it is clear that $\gamma_{og}^+(K_n) = n$, $\gamma_{og}^+(K_n - u) = n - 1$ and $deg(u) = n - 1$ forevery $u \in V(K_n)$. Hence $\gamma_{og}^+(K_n - u) < \gamma_{og}^+(K_n)$ but deg(u) $\neq 1$.

Remark 2.18. Theorem 2.15 is not true if deg(u) \neq 1. For the graph $G = P_5$, given n Figure 5, $\gamma_{og}^+(G) = 3$, $\gamma_{og}^+(G - u) = 4$ and $\deg(u) = 2 \neq 1$. Thus $\gamma_{og}^+(G - u) \leq \gamma_{og}^+(G)$.

Theorem 2.19. For any non-trivial tree T with $n \ge 3$, there exists a vertex $v \in V(T)$ such that $\gamma_{og}^{+}(T - v) = \gamma_{og}^{+}(T).$

Proof. Let T be any non-trivial tree with $n \geq 3$. It can be verified that the result istrue for $n = 3$. Since if $n = 3$ then $T = P_3$. Now consider the case that $n > 3$. Since Thas at least one vertex with degree greater than or equal to 2, there exists a vertex $v \in V(T)$ with $deg(v) \ge 2$ such that v is adjacent to at least one leaf and atmostone non-leaf. If there exists a vertex ν such that ν is adjacent to atleast one- leafand no non-leaf then it is clear that $T = K_{1,n-1}$ and v is the support vertex So that γ_{og}^+ ($(T - v) = n - 1 = \gamma_{og}^+ (T)$). If there does not exist a vertex v such that v is adjacent to exactly one leaf, then it is clear that ν is adjacent to two or more leaves. Assumethat ν is adjacent to exactly one non-leaf. By Theorem 2.3 every minimal opengeodetic dominating set of T contains its leaves So it is clear that $\gamma_{og}^+(T - v) = \gamma_{og}^+(T)$. If there exists a vertex v such that v is adjacent to exactly one leaf u and one non-leaf, then $deg(u) = 1$ and $deg(v) = 2$. Let $T' = T - v - u$. Since $deg(u) = 1$, By Theorem 2.16, $\gamma_{og}^+(T - v) \leq \gamma_{og}^+(T)$. Hence, $\gamma_{og}^+((T') \leq \gamma_{og}^+(T - u) \leq \gamma_{og}^+(T)$. However, we have $\gamma_{og}^+(T') > \gamma_{og}^+(T) - 1$. If $\gamma_{og}^+(T') = \gamma_{og}^+(T) - 1$, then $\gamma_{og}^+(T) = \gamma_{og}^+(T - u)$. If $\gamma_{og}^+(T') > \gamma_{og}^+(T) - 1$, then

 $\gamma_{og}^+(T') = \gamma_{og}^+(T) = \gamma_{og}^+(T - u)$. Hence there exists a vertex $v \in V(T)$ such that $\gamma_{og}^+(T - v) = \gamma_{og}^+(T)$. **Remark 2.20.** Theorem 2.19 is not true for any graph G. For the complete graph K_n .

 $\gamma_{og}^+(K_n - v) \neq \gamma_{og}^+(K_n)$ for every $v \in V(K_n)$.

Theorem 2.21. Let G be a connected graph of order n . If G' is a graph obtainedby adding k , where $1 \leq k \leq n$, end edges to a graph G, then $\gamma_{og}^+(G) \leq \gamma_{og}^+(G') \leq \gamma_{og}^+(G) + k$.

Proof. Let G be a connected graph of order n and let G' be a connected graphobtained from G by adding k end edges $u_i v_i$ (1 $\leq i \leq k$), where each $u_i \in V(G)$ and $v_i \notin V(G)$. First we show that $\gamma_{og}^+(G) \leq \gamma_{og}^+(G')$ Let S be a γ_{og}^+ -set of G, So $\gamma_{og}^+(G) = |S|$. We now consider three cases.

Case(i): Let $u_i \in S$ for all i ($1 \le i \le k$). Then let $S' = S \cup \{v_1, v_2, ..., v_k\}$. Since each

 $v_i \notin V(G)$ is an end vertex of G' and $u_i \notin S$, $v_i \notin I[S]$ and $v_i \notin N[S]$, S' is a minimal

open geodetic dominating set of G'. Therefore $\gamma_{og}^+(G) = |S| < |S'| \leq \gamma_{og}^+(G')$.

Case(ii): Let $u_i \in S$ for some $i, 1 \le i \le k$. Since S is an open geodetic dominating set of G, there exists a vertex $v \notin S$ such that $v \in I[u_i, x] \subseteq I[S], v \in N[S]$ and $d(u_i, x) \leq 3$ for some $x \in S$. If $d(u_i, x) = 3$, then consider the set $S' = (S - \{u_i\}) \cup \{v_i, v\}$. If $d(u_i, x) \le 2$, then consider the set $S' = (S - \{u_i\}) \cup \{v_i\}$. It is easily verified that S' is a minimal open geodetic dominating set of G'. Therefore $\gamma_{og}^+(G) = |S| \leq |S'| \leq \gamma_{og}^+(G').$

Case(iii): Let $u_i \in S$ for all $i, 1 \le i \le k$. Then by the similar argument as in case(ii),

we can prove that $\gamma_{og}^+(G) \leq \gamma_{og}^+(G')$. Next, we show that $\gamma_{og}^+(G') \leq \gamma_{og}^+(G) + k$. Let $S \subseteq V(G)$ and let $S' = S \cup \{v_1, v_2, ..., v_k\}$ be a minimal open geodetic dominatingset of G'with maximum cardinality so that $\gamma_{og}^+(G') = |S'| + k$. Since S' isaminimal opengeodetic dominating set of $G', u_i \notin S$ for all *i*, where $1 \le i \le k$. We showthat *S* is minimal open geodetic dominating set of G. If $u_i \in I[S]$ and $u_i \in N[S]$ for all $u_i \in V(G)$ – S, then S is a minimal open geodetic dominating set of G. Ifnot, then there exists avertex $u_i \in V(G)$ such that $u_i \notin I[S]$ or $u_i \notin N[S]$. Then the set S ∪ $\{u_i\}$ ($1 \le i \le k$) is a minimal opengeodetic dominating set of G. Hence $\gamma_{og}^+(G') = |S| + k \le k$ $\gamma_{og}^+(G) + k$.

Theorem 2.22. For any two integer a and *n* with $2 \le a \le n$, there exists a connectedgraph G with $\gamma_{og}^{+}(G) = \alpha$ and $|V(G)| = n$.

Proof. It can be easily verified that the result is true for $2 \le n \le 3$. If $n = 2$, then $G = K_2$

and if $n = 3$, then G is either P_3 or K_3 . For $n \ge 4$. If $a = n$, then $G = K_n$ and if $a = n - 1$, then $G=K_{1,n-1}$. For $a \le n-2$. Let P: x, y, z be a path on three vertices. Let G be a graph obtained from P by adding new vertices $z_1, z_2, ..., z_{\alpha-3}, v_1, v_2, ..., v_{n-a}$ and joining each z_i ($1 \le i \le a-3$) with z, and

joining each v_i (1 $\leq i \leq n - a$) with xand z. The graph G is shown in Figure 6. Let $S = \{z_1, z_2, \ldots, z_n\}$..., z_{a-3} . Then By Theorem 1.1 (i)S is a subset of every open geodeticdominating set. It is easily verified that S \cup {u}, and S \cup {u, v} is not an open geodeticdominating set of G and so $\gamma_{og}^+(G) \ge$ a. Now S' = S \cup { x } \cup { y , v_i } (1 $\le i \le n - a$) or S' = S \cup { x } \cup { v_i , v_j } (1 $\le i, j \le n - a$) is a minimal open geodetic dominatingset of G and so $\gamma_{og}^+(G) \geq a$. We provethat $\gamma_{og}^+(G) = a$. If not, suppose that $\gamma_{og}^{+}(G) > a$. Then there exists a minimal open geodetic dominating set of S''with | $S'' \ge a + 1$. Then S'' contains at least two $v_i (1 \le i \le n - a)$. Now v_i must lie on $I[x, z_j]$ for $(1 \le i \le n - a)$ and $(1 \le j \le a - 3)$. Then x must belongs to S'' Then it follows that $S' ⊂ S''$, which is a contradiction to S'' is a minimal open geodetic dominating set of G. Therefore $\gamma_{og}^+(G) = a$.

∎

Theorem 2.23. For any two integer a and b with $2 \le a \le b$, there exists aconnected graph G with $\gamma_{og}(G) = a$, $\gamma_{og}^+(G) = b$.

Proof. It can be easily verified that the result is true for $2 = a = b$. Considerthe graph $G = K_n$. It is clear that $\gamma_{og}(K_2) = 2$, $\gamma_{og}^+(K_2) = 2$. If $2 < a = b$, thenconsider the graph $G = K_n$ (n > 2). It is clear that $\gamma_{og}(K_n) = \gamma_{og}^+(K_n) = n$. If $2 < a = b$, then consider the graph $G = K_{1,n}$. It is clear that $\gamma_{og}(K_{1,n})$ $=\gamma_{og}^+(K_{1,n}) = n - 1$. Now we consider $2 < a < b$. Let $P: x, u, v, w, t$ be a path on five vertices. Let *H* be a graph obtained from *P* byadding new vertices $z_1, z_2, ..., z_{a-4}$ and joining each z_i ($1 \le i \le a-4$) with u. Let G be a graph obtained from H by adding new vertices $y, s, v_1, v_2, ..., v_{b-a+1}$ and joiningeach $v_i(1 \le i \le b - a + 1)$ with x and y and joint s with y and t, the graph G isshown in Figure 7. First we show that $\gamma_{og}(G) = a$. Let $Z = \{z_1, z_2, ..., z_{a-4}\}\$ be the set of all endvertices of G. By Theorem 1.1 (i) Z is a subset of every open geodetic dominating set of G. Itis easily verified

that Z is not a open geodetic dominating set of G. It is easily verified that $\overline{Z} \cup \{x_1\}$ or $\overline{Z} \cup \{x_1, x_2\}$ or Z \cup { x_1, x_2, x_3 } is not a open geodetic dominatingset where $x_1, x_2, x_3 \notin Z$ and so $\gamma_{og}(G) \ge a$. Now $S = Z \cup \{y, s, w, u\}$ is an opengeodetic dominating set of G so that $\gamma_{0g}(G) = \alpha$. Next we prove that $\gamma_{og}^+(G) = b$. Let $W = Z \cup \{v_1, v_2, ..., v_{b-a+1}, s, t, u\}$. Then W is an open geodetic dominating set of G and so $\gamma_{og}^+(G) \ge a - 4 + b - a + 1 + 3 = b$. First we prove that W is a minimal open geodetic dominating setof G . Suppose that W is not a minimal open geodetic dominating setof G. Then there exists $W' \subset W$ such that W' is a open geodetic dominating setof G. Hence there exists $z \in W$ such that $\notin W'$. By Theorem 1.1 (ii) $z \neq z_i$ ($1 \leq i \leq a - 4$). If $z =$ $v_i(1 \le i \le b - a + 1)$ then W' is not a dominating set of G. If $z = s$ or t or u, then W' is not an open geodetic setof G . Hence W' is not an open geodetic dominating setof G . Therefore W is a minimalopen geodetic dominating setof G. Next we prove that $\gamma_{og}^+(G) = b$. Suppose that $\gamma_{og}^+(G) \ge$ $b + 1$. Then there exists a open geodetic dominating set of T such that $|T| \ge b + 1$. By Theorem 1.1(i) $Z \subseteq T$. Suppose that $\nu_i \notin T$ for some *i*. Then $S \in T$ and either ν or $w \in T$. Let us assume that $v \in T$. Now s and *v* must lie onsome pair of vertices of T.

Which implies t must belongs to T . Hence T contains opengeodetic dominating set, which is a contradiction. Therefore $\gamma_{og}^+(G) = b$.

REFERENCES

- 1. Buckley.F and Harary.F, Distance in Graphs, *Addition- Wesley, Redwood City*, CA, 1990.
- 2. Buckley. F , Harary.F and Quintas.L.V., Extremal results on the geodetic number of a graph, Scientia1988;2A:17-26.
- 3. Caro. Y and Yuster. R, Dominating a family of graphs with small connected graphs, *Combin.Probab.Comput*.2000; 9: 309-313.
- *4.* Chartrand .G, Harary.F and Zhang.P, Geodetic sets in graphs, *Discussiones MathematicaeGraph Theory*, 2000;20: 129-138.
- 5. Chartrand .G, Harary.F, Swart.H.C and Zhang.P. Geodomination in Graphs, *Bulletin of the ICA*, 2001; 31: 51 - 59.
- 6. Chartrand .G, Harary.Fand Zhang. P, On the geodetic number of a graph, *Network*s, 2002; 39(1): 1-6.
- 7. Cockayne.E. J, Goodman.S and Hedetniemi.S.T, A linear algorithm for the domination number of a tree, *Inform. Process.Lett*. 1975; 4: 41-44.
- 8. Douglas B. West, Introduction to graph theory, Second Edition, 2012.
- 9. Hansberg. A, Volkmann. L, On the Geodetic and Geodetic domination number of a graph, *Discrete Mat*hematics 2010; 310: 2140-2146.
- 10. Harary. F, Graph theory, *Addison-Wesley*, 1969.
- *11.* Harary. F, Loukakis. E, Tsouros. C, The geodetic number of a graph. *Math..Comput. Modeling*1993;11: 89-95.
- 12. Robinson Chellathurai.S and Padma Vijaya.S, Geodetic domination in the corona and join of graphs,*Journal of Discrete Mathematical Sciences and Cryptography*, 2014; 17(1):81-90.
- 13. Robinson Chellathurai.Sand Vijimon Moni.V, The Open Geodetic domination number of a Graph, *International Journal of Pure and Applied Mathematics*, 2018;119(16): 5337-5348.
- 14. Santhakumaran. A.P and Kumari Latha.T, On the Open Geodetic Number of a Graph *Scientia, Series A : Mathematical Science*s, 2010;20: 131-142.