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ABSTRACT 
 The object of the present paper is to establish two Fourier series expansion formulae 

involving A-function of one variable.  
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1. INTRODUCTION: 
 The subject of Fourier series for generalized hypergeometric functions occupies a prominent 

place in the literature of special functions and boundary value problems. Certain double Fourier 

series of generalized hypergeometric functions play an important role in the development of the 

theories of special functions and two-dimensional boundary value problems. 

 The A-function of one variable is defined by Gautam1 and we will represent here in the 

following manner: 

 A ,
, [x|( ,β ) ,

( ,α ) , ] =
π
∫ θ(s) x ds     (1)  

wherei = (  1) and 
 

(i)  θ(s) =
∏ Γ( α )∏ Γ( β )

∏ Γ( α )∏ Γ( β )
    (2)  

(ii) m, n, p and q are non-negative numbers in which m  p, n  q. 

(iii) x 0 and parameters aj, j, bk and k (j = 1 to p and k = 1 to q) are all complex.  

 The integral in the right hand side of is convergent if  

(i) x  0, k = 0, h > 0, |arg(ux)| <h/2 

(ii) x > 0, k = 0 = h, ( ) <  1 

where 

 k = Im (∑ α − ∑ β ) 

 h = Re ∑ α − ∑ α + ∑ β −∑ β   (3) 

 u = ∏ α α ∏ β β        (4) 

 ν = Re ∑ a − ∑ b − , 

 휔 = Re ∑ β − ∑ α  

and s =  + it is on path L when |t| →.  

 In our investigation we shall need the following results:  

 From Macrobert [2, 3]: 

 √ Γ( )
Γ( )

(푠푖푛휃) = ∑ ( )
( )

∞ sin(2푟 + 1)휃,   (5)  

where 0 <, Re s  .  

 √ Γ( )
Γ( )

푠푖푛 = 1 + 2∑ ( )
( )

∞ cosr휃,    (6)  

where 0 <.  
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2. MAIN RESULT: 

 In this section, we shall establish following Fourier series: 

 ∑ A ,
,∞ z|

, , ,β
,

,( , )

( , ), ,α
,

,( , )
sin	(2r + 1)θ 

= √π 푠푖푛휃A ,
, |

,β
,

,α ,      (7)  

provided that |arg(uz)| < ½ h, where h and u are given in (3) and (4) respectively. 

 A ,
, z|

, , ,β
,

,( , )

,α
,  

  +2A ,
, z|

, , ,β
,

,( , )

( , ), ,α
,

,( , )
푐표푠푟휃 

= √πAp,q
m,푛 z

푠푖푛2휃
2

|
bj,βj 1,q

aj,αj 1,p .      (8) 

provided that |arg(uz)| < ½ h, where h and u are given in (3) and (4) respectively. 

Proof of (7): 

 Using (1), the expression on the left side of (7) can be written as 

 ∑
π

∞ ∫ θ(s)
Γ( )Γ( )

Γ( )Γ( )
sin(2푟 + 1)휃 z ds  

 On changing the order of integration and summation which is easily seen to be justified, the 

above expression becomes 

 
π ∫ θ(s)

Γ( )

Γ( )
∑ ( )

( )
∞ sin(2푟 + 1) 휃 z ds. 

and on using the relation (5), it takes the form 

 √ 푠푖푛휃.
π
∫ θ(s) (z/sin θ) ds. 

which is just the expression on the right side of (7). (7) is the Fourier sine series for the A-function of 

one variable. 

 The Fourier cosine series (8) is proved in an analogous manner by using (1) and (6).  
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