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INTRODUCTION

Let us consider a mesh P of [0, 1] given by 0=Xx,<X <..<X,=1such that
X —X,=p =% for i=12,....,n. For a given h > 0 suppose a real continuous function s(x,h) defined

over [0,1] and its restriction to X ,,X; is a polynomial s; of degree 2 or less for i = 1,2,...., n. Then
s(x, h) defines a discrete quadratic spline if

D®s,(x, —h)=D¥s, ,(x, +h), i=12,....,n-1 (1.2)
where the central difference operator D f (x) =(f (x+h)— f (x—h))/2h (see Rana 9. D(2,P,h)

denotes the class of all discrete quadratic splines which satisfies the periodic condition.

Discrete splines have been introduced by ° in connection with certain studies of minimization
problems involving differences. Existence, uniqueness and convergence properties of discrete cubic
spline interpolant matching the given function values at mesh point have been studied by®
. For this case further studies in the direction of the result proved in  have been made by *# 6.7 1. 14
. Now ' have obtained a precise estimate concerning the deficient discrete cubic spline interpolant
matching the given function at two intermediate points between the successive mesh points. *2
observed that the local behavior of the derivative of a cubic spline interpolator is some times used to
smooth a histogram which has been estimated by *. For application of discrete splines to solve
general type of vibrational problem we refer to *°. It may be observed that the approach used by ® for
defining discrete cubic splines is not capable of providing the corresponding definition for discrete

quadratic spline and study its local behavior interpolating the given function at mid points.

EXISTENCE AND UNIQUENESS.
Considering the interpolatory condition for a given function f
s(t,,h)=f(t)t, =(x, +x,)/2, i=12...,n (2.1)

we shall prove the following :

THEOREM 2.1. Let f be 1 periodic and p>4h, them for any h>0 there exists a unique 1 periodic
discrete quadratic spline s(x,h) in the class D(2,P,h) which satisfies the interpolatory condition
(2.1).

Proof. Suppose in the interval [x,_,x ] for all i,

2(p—2h)x(xh)=(x=x, —h)"M; =(x, =x=h)* M, +2(p—2h, (2.2)

where M, = M, (h) = D&s(x; —h,h)and c, is a constant which has to be determined.
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We get the following from (2.2) when we appeal the interpolatory condition (2.1).
8f(t,)=(p—-2h)(M, -M,,)+8c, (2.3)
Since s(r,h) is continuous, therefore using the continuity of s(x,h)in (2.2) along with (2.3), we have
((p—4h)/2M_, +(3p—4h)M, +((p—4h)/2M,,, =F,(h), i=12,...,n—1 (2.4)
Where F (h)=4(p—2h)f(t,,_—f(t)))/p.
It may be seen that the excess of the positive value of the coefficient of M. over the sum of

the positive values of the coefficients of M, ;and M, is 2p which is >0. Thus, the coefficient matrix

i+1

of the system of equations (2.4) is diagonally dominant and hence invertible. This completes the
proof of Theorem 2.1.
ESTIMATION OF THE INVERSE OF THE COFFICIENT MATRIX.

Ahlberg, Nilson and Walsh® have estimated precisely the inverse of the coefficient matrix
appearing in the studies concerning continuous cubic splines matching the given function at the mesh
points. Following Ahlberg, Nilson and Walsh, we shall obtain similar precise estimate for the inverse
of the coefficient matrix (2.4). It may be mentioned that this method permits the immediate
application to the spline to standard problem of numerical analysis (see ANW", p.34). Without loss

of generality we assume for the rest of the paper that discrete quadratic spline s(x, h)under
consideration satisfies the condition Ds(x, —h,h)=0. Now in order to find the inverse of the

coefficient matrix of (2.4), we introduce the following square matrix of order n as

26 o« 0O ... 0 O O
a 26 a .. . 0 0 O
D, (a, B)=
0O 0 ... a 2 «
i 0 0 ...0 a 28

where o and B are given real numbers such that 5% > aa®. By using the induction hypothesis

it is easily seen that the determinant |Dn| satisfies the following difference equation.

D, (@, B) 2D, (a. B) + &*|D, (e, B) =0 (3.1)
with  |D. (e, ) =0,|Dy (e, B) =L and for n =(p* —a? )"

2n|D, (., B) = (B+n)" = (B-n)", B*>a’
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ID,(a, B) =(n+1)B", otherwise. (3.2)

Now we write the system of equations (2.4) in the form
AM=F (3.3)

Where the coefficient matrix A is a square matrix of order n-1 and M and F are the column
vectors [M;,M,,...M ] and [F,F,,...F, _,] respectively. Further in view of (3.1) and (3.2) it may

be observed that
2q7(8+a?2)D, (e, B) = 28— (ar)™ + a’r(1- (ar)?"?) (3.4)
where r =—q* =—(8— (8% —a*)"?)l o?.

Taking 28 =3p—4hand a = (p —4h)/2in |Dn (a,ﬂ)‘ we see from (3.1) that the determinant

of the coefficient matrix A of (3.3) satisfies the difference equation.

|A=28D, ,(a, B)-a’[D, 5(a. B) (3.5)

Thus, it follows from (3.4) that

20" (B+a’r )| Al= (28 + a2 f — (14 25 (or Vo (3.6)
Thus, substituting 28 =3p—4hand a = (p —4h)/2 in (3.5), we write the elements a; of Al
from the cofactors of the transpose matrix (see *, p. 35-38). Thus, for 0<i< j<n—2 ori=j=0

| Ala, = (qr)” Di( p—4h13p—4h)Dn_( p—4h 3p—4h)

2 2 )™M 2 7 2

and

p—4h 3p-4h
2 ]

| Alay; =(q.r) Dnj( Jfor 0<j<n.

Now using (3.5) and (3.6) we see that for 0<i< j<n-2
((3p —4h)+r(1-3")a; =r’" (1— ra )(1— 22(“*“))
((3p —4h)+r/2(1— rz”)am_2 =r""2(@1—-r?*?), for 0<i<n-2,
((3P—4h)+r/2)(1—l’2”)aoj = r’-(l—rz(”’jfl)), for 0< j<n-2,

(Bp—an)+r/2F(—r")a, , =r"*(3p—4h-+r).
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From the above expressions, we see that A™ is symmetric. Now considering a fixed value x

such that 0 < x < 1, we observe that for fixed e>0and 0+& <i/n, j/n<l-¢, the elements a; of At
may be approximated asymptotically by i /(3p —4h+ r).
Further, it may be seen that (see[11])

ri (L+r)

(3p-4h+r) (1-r)3p-4h+r)

Where r = 2{2(2p)"2(p — 2h)? — (3p — 4h)}/( p — 4h)?
We thus prove the following.

THEOREM 3.1. For a fixed e>0and O+e<i/n, j/n<1-¢, the coefficient matrix A of (3.3) is
invertible and the elements a of A can be approximated asymptotically by r'"/(3p—4h+rand

row max norm of its inverse, that is

S B

< U-n@Ep_anrr ) 3.7)

where r =2[2(2p)"?(p—2h)? — (3p—4h]i(p—4h)?.

REMARK 3.1. In studies concerning discrete splines smaller value of h have special significance

for the simple reason that discrete splines reduce to continuous splinesas h —0.
ERROR BOUND

For a given h>0, we introduce the set

Ruo ={X, + Jh: jis aninteger}
and define a discrete interval as follows.
[O’l]h = [0’1] MRy,

In this section, we shall estimate the error bounds e(x,h)=s(x,h)— f(x) over the discrete

interval [0,1],. As usual the advantage in the following convergence theorem is that we do not
require of its proof any smoothing condition for the function. We shall need the following Lemma ®

LEMMA 4.1. Let {a}and {b;}be given sequence of non-negative real numbers such that

Zirilai :Z';:lbj . Then for any real valued function f defined on a discrete interval [0,1],, we have
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where x,, v, €[01], for relevant values of i, j, k.

In order to find the bound of e(x), we substitute the value of c¢; from equation (2.3) in

equation (2.2) to get

8(p —2h)x(x,h)=
4(x=x,, —h)'M; —4(x, —=x=h)’M,; +(p-2h)Bf (t)-(p-2n\M,-M,,))  (4.1)

Now replacing M, by D®e(x, —h)and s(x,h)by e(s,h)in equation (4.1) we wee that it can be

written in the form
§(p—2hke(x,h)=

[40¢= 5, =)* ~(p 20 pPe(x, ~h) =[x 1= ~(p—20) PPe(x., ~h)+R(f) 4.2)
where R, (f)=8(p—2h)f (t,)+[4(x—x_, —h)’ —(p—2h)? P& f (x, —h)-
40 ~x=h) ~(p~20F P £ (x., ~h)-8(p~20)1 (x).

It may be seen easily that Ri(f )can be written in the following form of divided difference.

R(F)=(4(x—x_, =h)? —(p—2h)?)[x, —2h, % |f = (4(x, —x—h)? -
(p—20)[x, —2h, %, ]f +4(x —x—h)[xt,]f —4(x—x_, —h)’[xt]f.

Thus
3 3
|Ri(f)= Zai [Xio’xu]f _ij [yj()’yjl]f ,
i1 =

where a, =b, =4(x—x_, —h)’,a, =h, =4(x, —x—hY’,
a, =h, =(p—2h), X4 = Yoo = X, — 2N, X, = Ya; = X, Xop = Yi0 = X,
Xo1 = Y11 =1, Xg0 = Yoo = Xig — 2N, X5y = Y, = X, .

Clearly > a; =Y b, and threfore applying Lemma 4.1 for m=n=3 and k =1, we have
IR, (f)<(5p? +12h? —12hp)W(DE , p) (4.3)
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We now proceed to obtain an upper bound of Dfe(x, —h). For this we replace M, by
De(x, —h)in equation (3.3) to get
A(DBe(x, —h))=(F )— A(DE £ (x, —h))=(T,(f)) (say), i- 1,2,...., n-1. (4.4)

Now, it may be seen that (T, (f)) is written in the form

(101 = Db ]t -0,

where a, =4(p—2h)b, =b, =(p—4h)/2,b, =(3p—4h), X, =t;, X, =t
Yio = Xia — 2h, Yi1 = Xy Yoo = X — 2h, Yo1 =Xy Y30 = Xjsa — 2h,and Y31 = Xijg -

Clearly it is verified that Zai = ij . Therefore, applying Lemma 4.1 again for m=1, n=3 and k=1,

we get

(T,(f))<4(p—2n)w(D®,p) (4.5)
Thus, using (3.7) and (4.5) in (4.4), we have

|D%e(x, ~h)| < K,M(DP f, p) (4.6)

Where K, =4K,(p-2h).
Thus, using (4.3) and (4.6) in (4.2) we have,
le(x,h)| < K(p, h)w(D&f, p) (4.7)
Where K(p,h)=((6p? —8ph)K, +(5p? +12h* =12hp))/8(p—2h).
We thus prove the following.
THEOREM 4.1. Suppose s(x,h)eD(2,P,h) is a discrete periodic quadratic spline interpolant of a
1-periodic function f satisfying the interpolatory condition (2.1). Then over the discrete interval
[0,1]n,
le(x,h)| < K(p, h)W(D,fl}f : p) (4.8)

Where K(p, h) is that function of p and h defined earlier. W(f , p) is modulus of continuity

and ||.|| is the discrete norm.
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