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ABSTRACT 
Cosmological models are the mathematical description of the dynamics and evolution of the 

universe over time. They are based on direct observations and can be used to make predictions that 

can be confirmed by further investigations. The universe is observed to be approximately 

homogenous and isotropic over subsequently large spatial distances of the scale of over hundred 

mega parsecs. This isotropic and homogenous universe is capable of contracting and expanding 

depending on the parameters like curvature coefficient k, scale factor a (t) and radius of curvature 

R_{0}. We study the stages of evolution of the universe along with the dynamics using Freidman’s 

equations and solving them for matter, radiation and dark energy dominated each for open k=-1, 

closed k=1 and flat k=0, to obtain the value of scale factor and time as the evolution proceeds 

through stages where various types of energy become dominated, as the previous one decays. A 

graph plot built using 'Gnu plot', showing the age of the universe as a function of matter density and 

dark energy density has been built, using the sets of data points obtained from the code using Python 

2.7 in the later section. In this report, we also discuss the expansion histories of the universe given 

the energy density of components. 
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INTRODUCTION 

One of the first theories explaining the dynamics of the universe was the Steady State 

Theory. The theory depicted as the universe having a steady state due to constant matter creation, 

hence having constant density. On the other hand, there was the evolutionary theory which stated 

that, density of the universe decreased over time as matter domination decreases. The universe is 

approximately homogenous and isotropic, and is now known  to be in a state of accelerated 

expansion at the Hubble rate. Theoretically, a universe with the properties like ours expanding or 

contracting depending on certain cosmological factors like curvature k, scale factor a (t) and radius 

of curvature. Robertson-Walker metric describes the universe in this state of isotropy. We shall 

discuss the various expansion his Tories and shape of the universe depending on Friedman 

equations, which depend on the above characteristics. A graph plot built using Gnu plot, showing the 

age of the universe as a function of Ωm and ΩΛ has been built, using the sets of data points 

obtained from the code using Python 2.7 in the later section. 

FREIDMAN EQUATIONS 

Freidman developed a set of relativistic equations in the framework of general relativity to 

model the universe, and hence has been credited with developing the dynamics of an expanding 

universe. The Freidman equations do not include any particle interactions other than gravitational 

attraction, hence are solely built on the assumption of a ’pressure- less’ universe. 

These equations can also be derived using the Newtonian framework1.  Assuming an observer 

to be moving in a uniformly expanding space of density ρ and the medium being isotropic, any point 

in the medium space can be taken as the center. A particle of mass m in the space can only be 

perturbed by the field in it’s radius of curvature R0. The scale factor measures the expansion rate of 

the universe and is a time-dependent quantity .If, between times tl and t2, the scale factor doubles in 

value, that tells us that the Universe has expanded in size by a factor two, consequently it will take 

twice as long to go from (x1, y1, z1) to 

(x2, y2, z2) in the coordinate system (x, y, z). 

V = 
GMm R0 

Total mass M is given by M = 4πρr3/ 3, which gives 

 

V = − 4Gmr3πρ 3 
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The kinetic energy of the particle is mṙ2/2, where the velocity of the particle is ṙ. The total energy of a 

system is given by 

U = T + V (1) 

 

 

U 
1 2 4Gmr2πρ 

 

= 
2 

mv  − 
3 

(2)
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ȧ 

4πG 

a a2 

3 

( / 

Substituting r by a(t)x, where r is the proper distance and a(t) is the scale factor and x is the comoving 

distance, we get: 

U 
1 2 4Gm(ax)

2
πρ 

 

= 
2 

m(ax )̇ − 
3 

(3) 

Multiplying each side by 2U/ma2x2 weget : 

.
ȧ

Σ2 

 

 

 

8πG
ρ 

3 

kc2 

(4) 

a2 

Equation (4) is the popular standard form of Freidmann equation. This can be modu- lated or 

transformed in a to obtain an acceleration equation, which can later be solved for various cases by 

changing the parameters. 

THE ACCELERATION EQUATION 

The acceleration equation describes the acceleration of the scale factor, an accelerating 

universe having pressure ’p’. It is notable that increase in pressure reduces the acceleration and vice 

versa1. By differentiating eqn(4) 

2 

.
ȧ

Σ .
aä − ȧ2 

Σ
 

8πG 
ρ̇
  

2  kc2ȧ  a3
 

 

(5) 

 

The fluid equation gives the evolution of density with time (), and holds true only for 

adiabatic processes where dQ= 0 as there is no possible source for the heat to come from in 

Freidman universe. The fluid equation can be written as : 

ρ̇    + 3 
a 

.
ρ + p/c2

Σ 
(6) 

Substituting in equation (5) we get: 

a¨ 

a 
= − 

a − 

= + ) 

= 
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3 

.
ρ + 3p/c2

Σ 
(7) 

Equation (7) is the ’acceleration equation’ which describes the dynamics of an accelerating universe. 

 

EQUATION OF STATE PARAMETER w 

The equation of state parameter, is a dimensionless constant which gives the relation between 

pressure and matter density. It can be expressed as: 

w = p/ρ (8) 

It works on the assumption that there pressure at any point is associated or co-dependent on the 

matter density at that point. The w is similar to the equation of state in thermodynamics, taking the 

universe as a perfect isotropic fluid.  In cosmology,  the simplest assumption  is p=0, which gives 

w=0 which corresponds to matter, so the pressure of non-relativistic matter (dust) is not enough to 

have any significant gravitational effect.  The value of w for 

radiation is w = -1/3 and dark energy Λ is w = -1 



Shah Shreya, IJSRR 2018, 7(4), 557-600 
 

IJSRR, 7(4) Oct. – Dec., 2018                                                                                                         Page 562  

ȧ 

.   Σ2ρ 

 ρ ρ 

DENSITY IN RADIATION AND MATTER DOMINATED UNIVERSE 

Next, we solve for density in Freidman equation for matter, radiation and Λ dominated universe. 

The curvature k can have 3 possible values k=-1,0,1 depending on whether it is an open, flat or closed 

universe respectively2. 

1. For matter dominated universe and k=0, p= 0 

ρ̇    + 3 
a 

.
ρ + p/c2

Σ 
= 0 (9) 

Since p=0, 

 

Multiplying by a3 on both sides 

 

which is the expanded form of 

ρ̇    + 3 
ȧ  

(ρ) = 0 (10) 

a 

 

 

a3ρ̇ + 3ȧ2̂ρ = 0 (11) 

d  
(a3ρ) = 0 (12) 

dt 

Therefore, it can be obtained that a3ρ =constant 
 

2. For radiation dominated universe and k=0, p= ρ/3 

a˙ 

˙ + 3 
a 

+  /3c (13) 

Taking c = 1, the next equation is 

 

a4ρ̇ + 4ρ ȧa3 (14) 

Which can be written as d(a4ρ)/dt, hence : 

a4ρ = constant (15) 
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0 

0 

a 

= 
3 r a m a Λ 

FREIDMAN EQUATION + ENERGY EQUATION + EQUATION OF STATE 

For matter dominated model 

 

For radiation dominated model 

a3ρ = a3ρ (16) 

 

a4ρ = a4ρ (17) 

Taking 
.

ȧ 
Σ 

= H, where H is the Hubble parameter which changes with time, 

H2 8πG 
Σ

ρ0 
.a0 

Σ4 ρ0 
.a0 

Σ3 

ρ0 

Σ kc2
 

 

 

 

(18) 

 

This equation (18) is the standard mathematical expression which includes all three forms of 

energy matter, radiation and dark energy, which dominated the universe at differ- ent stages of time 

as well as the curvature constant k. 3 

a2 

+ + − 
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a 

. 

a 

d
t 

3 0 a1/2 

The Critical density is given by  

3H2
 

ρcr = 
8πG 

(19) 

 

The next step is to find the dependence of scale factor a and H−1 for matter and radiation dominated 

universe for k=0 and plot a graph for log(H−1) and log(a). 

 For matter dominated universe, k = 0, p= 0, a3ρ = constant 

Plugging the above parameters in equation number (18) 

 

H2 = 
8 

πGρm 3 

.
a0 

Σ3 

(20) 

 

 

H = 
8 

πGρm 3 

.
a0 

Σ3 

(21) 

 

da 
= 

.
8 

πGρma3   1  
 

 

(22) 

∫  

a1/2da = 

∫  .
8 

πGρma3dt (23) 

3 0 

Let a0 = 1 , which is the current scale factor value 

2 
a3/2 = 

.
8 

πGρma3t (24) 

 

Which gives, 

3 3 

 

.
3 

Σ2/3 

0 
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2/3 

 

Also, 

a = 
2 

H0 t (25) 

 

 

Therefore, the scale factor a is: 

 

t = 
2 

H−1(26) 3 

 

a = (H0)
2/3

(H−1)
2/3

 (27) 

Equation (27) gives the relation between a and H−1 for a matter dominated flat universe 
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0 

3 
m 

a 

d
t 

3 0 a 

a 3 

 For  matter dominated universe, k = 0, p= ρ/3, a4ρ  = constant 

H = 

.
8 

πGρ   
.

a0 
Σ4 

(28) 

 

da 
= 

.
8 

πGρma3 1 

(29) 

∫  

ada = 

.
8 

πGρma4 

∫  

dt (30) 

3 0 

Which results in, 

 

a = (2H0)
1/2

t1/2 (31) 

a = (2H )
1/2

(
1 

H−1)
2/3

 (32) 

2 

 

 For dark energy, k= 0, w = -1 

.
ȧ

Σ 

= 

.
8 

πGρΛ (33) 

∫  
da 

= 

∫  .
8 

πGρΛdt (34) 

a 3 

ln(a) = H0t (35) 

a = eHt, t = H−1 (36) 

Equation (36) gives the scale factor for a Λ dominated universe 

Below is the table giving the values of log(a) and log(H−1) based on the solutions for matter 

dominated flat universe. 
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log(a) log(H−1) 
-40 -64.84 

-30 -49.84 

-20 -34.84 

0 -4.84 

10 10.155 

20 25.55 

30 40.155 

40 55.155 

 

log(a) log(H−1) 
-40 -84.84 

-30 -64.84 

-20 -44.84 

0 -4.84 

10 15.16 

20 35.16 

30 55.16 

40 75.16 

 

 

Table 1:  For MD Table 2: For RD 
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0 

= 
3 r a 

m a Λ 

 

 

The violet line in the above graph represents for matter dominated era M.D ∝ a3 and the 

green line represents the radiation dominated era R.D ∝ a4. H−1 is called the Hubble time. Both the 

lines intersect at a point which is the point of transition from a radiation dominated era to a matter 

dominated one at the value of log(a) and log (t) corresponding to that point. 

AGE OF THE UNIVERSE AS A FUNCTION OF COSMOLOGY- CAL 

PARAMETERS 

We first obtain a general solution of the Freidman equation from (18) 

H2 8πG 
Σ

ρ0 
.a0 

Σ4 ρ0 
.a0 

Σ3 

ρ0 

Σ kc2
 

 

 

 

(37) 

 

Multiplying and dividing (37) by H2
 

.
 H 

Σ2 
8πG 

Σ
 

 

 

0 
.a0 

Σ4 0 
.a0 

Σ3 
0 

Σ 
kc2

 

 

 

Now, 
H0 

= 
3H2 

ρr 
a
 

 

ρ + ρm 
a
 

 

3H2
 

 

 

+ ρΛ 

0 

a2 

0 

+ 

+ − 
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r m Λ 

2 2 

− 
a2H2 

(38) 

cr = 
8πG 

(39) 

.
 H 

Σ2 

 

 

Σ 
ρ0 .a0 

Σ4 

  

ρ0 .a0 
Σ3 

  

ρ0 Σ 

 

 

kc2
 

 

 

 

 

Ωm = 
ρm 

, Ωr = 
ρr 

, ΩΛ = 
ρΛ

 

 

 

(41) 

ρc ρc ρc 

a H0 
ρc a ρc 

a ρc H 

= 

+ + − (40) 

0 
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0 

× 

Ωr + Ωm + ΩΛ + 
a2

 

x 

Ωr x + Ωmx + ΩΛx + Ωk 

a d
t 

d
t 

H2 
Ω0x−2 + Ω0 x−2 + Ω0 x2 + Ωk 

Substituting (41) in (38), we get 

.
 H 

Σ2 

 

 

Σ 
0 

.a0 
Σ4 

 

0 
.a0 

Σ3 

 

0 Ωk 

Σ 

 

Ωk is the curvature parameter which is equal to -k/a2H2, taking a2, and another variable 

x, where x = a/a0 0   0 0 

and multiplying x2 on both sides: 

.
 H 

Σ2 
2

 

 

Σ   
0   −2       0   −1 0   2 

Σ 

Now, H = 
.

ȧ 
Σ 

, ȧ = da/dt, x = a/a0 so, 
.

da 
Σ 

= 
.

dx 
Σ
 

∫ 

dt = 

∫

 

L.H.S = 
.
dq/dt)

2
/H2(44) 

  x(t)  

. 
 

    

 

 

(45) 

 

Equation (45) gives the age of the universe t which is a dimensionless function of matter density 

parameter Ωm ,radiation density parameter Ωr and DE density parameter ΩΛ , and Ωk can be written 

in terms of other parameters as below: 

Ωk = 1 − Ωm − Ωr − ΩΛ (46) 

The FRW cosmology is completely based on these parameters, and the objective of observational 

cosmology is to find the values of these parameters.  For our universe Ωr = 

7 10−5 which is really a very negligible value to affect the time t, while Ωm = 0.3 and 

Ωr = 0.7. For open universe with negative curvature Ω < 1, for a flat universe Ω = 1 and 

corresponding to closed universe with positive curvature Ω > 1. 

DYNAMIC AND EXPANSION HISTORIES OF THE UNIVERSE FROM 

FREIDMAN MODELS 

Given the total energy content of a Universe, given as a sum of different perfect fluids such 

Λ m r 0 

H0 

a a H0 = (42) 

= (43) 

   



Shah Shreya, IJSRR 2018, 7(4), 557-600 
 

IJSRR, 7(4) Oct. – Dec., 2018                                                                                                         Page 571  

x 

Ωr x + Ωmx−1 + ΩΛx2 + Ωk 

2 
× 

Ωr x 

+ Ωmx 

+ ΩΛx + Ωk 

as radiation, pressure less matter, a cosmological constant etc, it is not obvious what kind of 

expansion histories are possible, e.g. if the model has a Big Bang, if it will expand forever, if it 

accelerates etc. We derive a rescaled Freidman equation, which is of the form of energy conservation 

equation in classical dynamics containing K. E and P. E terms. Rewriting equation (43): 

 

.
 H 

Σ2 
2

 

 

Σ  
0  −2 0 0 

Σ 

τ is a dimensionless measure of time defined as τ = tH0, H0 being the Hubble constant. Multiplying 

1/2 on both sides: 

1 
.

dq 
Σ2

 

 

 

. 
dt 

Σ2 

 

 

Σ 
0 −2 

 

0 −1 

0   2 0
Σ 

dτ d
t 

H0 = (47) 

× 

= 
2 

× (48) 
1 
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.  Σ

ing one dimensionally along coordinate a with kinetic energy  (ẋ) 

 , potential energy 

x2 

. Σ 

x2 

e f f = 
2 

0 

Λ 

m + 

x 

r 

x2 

1 
(ẋ )

2
 + Ue f f = 

Ωk
 

 

 

(49) 

 

Where, 

2 

 

U 
1 

Σ

Ω x 

2 

 

Ω0 Ω0 
Σ 

(50) 

 

Ue f f (x) is the effective potential energy in cosmology, similar to potential energy in classical 

dynamics. Equation (49) is the energy equation K + U = E for a particle mov- 

1 2 

2 

Ue f f (x) and total energy Ωk/2. To understand the expansion histories we plot the graph for Ue f f (x) v/s 

x for different cosmological parameters : matter, radiation, Λ and curvature. We plot a graph 

corresponding to each parameter based on the values of x. 

 For x 1 

If x  1, the radiation term becomes the most dominant as  
Ωr , while the matter and DE density 

terms are comparatively negligible while where x = a/a0, then: 

Ω
(
0) 

Ue f f (x) ≈
   r 

 (51) 

 

The equation is of the form y = -c/x2 hence the graph obtained is of the same form. 

2 + 
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. Σ 

Figure 1: The graph for effective potential v/s scale factor for the above case 

 For x 1 

If x1, the dark energy term becomes the most dominant as ΩΛx2 , while the matter and DE 

density terms are comparatively negligible while where x = a/a0, then: 

Ue f f (x) ≈ ΩΛx2 (52) 
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x 

The equation is of the form y = -cx2 hence the graph obtained is of the same form. This corresponds 

to the current accelerated phase when the cosmological constant is dominating the energy content of 

the Universe. The scale factor then grows indefinitely while the matter density approaches zero 

Figure 2: The graph for effective potential v/s scale factor for scale factor much greater than 1 

 For matter dominated model 

Another way to plot the dependence of the effective potential energy on x = a/a0 for a matter 

dominated model with zero curvature, k = 0 is taking: 

Ue f f (x) ≈ 
Ωm

 

The equation is of the form -1/x, so the graph obtained is as below: 

 

                                                 Figure 3: Effective potential v/s scale factor for MD model 

 

(53
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The above graph depicts that for a matter dominated model, the scale factor keeps on increasing, 

and Ue f f becomes less and less negative. Due to this, it can be concluded that pressure less matter 

decreases the rate of expansion. 
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= − =k 

− 

For curvature k = -1 and k = +1 : : Open and closed universe 

The curvature parameter Ωk is of the form of total energy in equation (49). For an open 

universe with k = -1, Ωk becomes positive, while fork = +1closeduniverseΩk stays negative. 

 

Ω 
 k  

E (54) 

2a2H2 

0   0 

 

Figure 4: Graphs of V v/s a(t) for different cases 4 

 

The above graph shows what the the plot for Ue f f v/s x looks like for a universe with positive 

or negative curvature. The curvature parameter relates to the others as in Ωk = 1 Ω0, where Ω0 = Ωm + 

Ωr + ΩΛ. It can be derived that the system undergoes an accelerated expansion in the beginning as the 

scale factor increases, the potential increases and reaches 

a certain maximum called the ”potential barrier” and undergoes decceleration later on and the scale 

factor decreases. 

Figure 5: Different configurations of the universe as a particle 

 

• FIG.4: Plot of the effective 

potential V (a) versus the scale factor a. For  

configuration (A) the motion of the sys- tem begins from a = 1 for 

(B) the motion of system be- ginning from a = 

 0 and a = 1 respectively. (C) corresponds to  

quasi-static solution, which becomes unstable under mi- nor fluctuations. 
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2 x2 + 
x 

+ 

From equation (54) if: 
 

k = 0, E = 0; k = 1, 

E < 0; k = −1, E > 0 

 

 

 

(55) 

The negative total energy E ł0 lies below the abscissa, while E 0 lies above the abscissa, 

whereas E = 0 lies on the x-axis itself. Supposing the universe a particle rolling up and down the 

slopes. For region A the motion of the system begins from x=0, reaches a certain peak value of x. So 

the scale factor keeps on increasing, P.E increases while the kinetic energy decreases. The K.E at the 

top is insufficient to cross the barrier, hence the system bounces back towards the decreasing scale 

factor and increasing negative potential Ue f f . 

Region (B) : The system starts its motion from a = +∞ and moves towards decreasing scale 

factor and increasing P.E(a). The system reaches a potential barrier which is not possible to overcome 

due to insufficient K.E, so the system rolls down the slope with increasing scale factor and decreasing 

P.E/ Ue f f , hence the system continues to expand forever, which similar to a case of Λ dominated 

universe. For a closed universe, the total energy goes E ¡ 0 

where the universe expands in the beginning, the Ue f f and x reach a certain peak value and 

rolls back to a = 0, which closely depicts the region (A). As for an open universe with k =-1, there is 

no energy barrier for the system since the potential barrier for E ¿ 0 lies above the abscissa , hence it 

undergoes eternal inflation. 

Figure 6: The graph for effective potential v/s scale factor for the above case 

The above image is the graphical representation of Ue f f v/s x for an open universe E 0, k = -1. 

The effective potential is of the form: 

Ue f f = − 
1 

Σ
 1 
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2 x2 

1 
x2

Σ 

(56) 

 

Ue f f ≈ − 
1 
.
 1 

Σ

; for x 1 

Ue f f ≈ 3 ; for x=1 

Ue f f ≈ x2 ; for x 1 

(57) 
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≈ 

≈ 

− 

a 3 c2 

The earlier portion of the graph starting from x = 0 to x 1.2 is the plot for the first equation in 

(57), the peak aft is the inverse graphical representation of the second equation in (57), while the 

downward slope gives the inverse plot for the third equation due to the (-) sign in (56). For an open 

universe, at x(t) 1.2 the universe expands eternally and the model does not have a Big Bang. At x(t) 

1.2, the universe has a constant negative potential and is in a stable state. The region from 0 a 0.8 , 

shows a region transitioning/ beginning from 

a Big Bang at x = a/a0 = 0 

Freidmann acceleration equation : 

ä 
= − 

4 
πG 

.

ρ + 
3p 

Σ 

(58) 

 

ä 
= − 

4 
πG 

.

ρ + 
3ωρ 

Σ
 

 

a 3 c2 

4 

(59) 

= − 
3 

πGρ (1 + 3ω) 

In classical dynamics F = m = -dV/dx. Therefore: 

 

ä  = 
dV 

da 

 

 

 

 

(60) 

Which means the acceleration of the universe depends on ω from (59) and V from (60) 

ω > −1/3; ω < −1/3; ω = −1/3; a¨ 

a 
< 0 (61) 

a¨ 

a 
> 0 (62) 

a¨ 

a 
= 0 (63)
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Since acceleration 
.

ä 
Σ 

is dependent on potential as 
.

dV 
Σ

, when 
.

ä 
Σ 

is greater than 0, 

dx a dx 
.

dV 
Σ 

should be negative, so ω< − 1/3.  Similarly for 
.

ä 
Σ 

<0, the term 
.

dV 
Σ 

should be 

a dx 

 

   

 

positive, so ω> − 1/3.  If 
.

ä 
Σ 

= 0 , 
.

dV 
Σ 

should be zero.  If ω > −1/3, as would be the 

case with only matter and radiation With dark energy there is a new twist: since the dark energy 

density decreases more slowly than that of matter or radiation, as the Universe ex- pands dark energy 

eventually dominates the third term in Ue f f . Thereafter, Ue f f decreases monotonically, since ωDE < -

1/3, approaching -∞ as a tends to ∞. Within GR, accelerated expansion cannot be explained by any 

known form of matter or energy but can be accom- 

modated by a nearly smooth form of energy with large negative pressure, known as dark energy, that 

accounts for about 75 % of the Universe. 

a dx a 
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8 

3a 

∫ ∫ 

.0
 

3a 

3 

3a  
ρ0a0 − 1 (65) 

9 SOLUTIONS OF SCALE FACTOR a(t) AND TIME t FROM FREI- DMANN 

EQUATIONS FOR M.D AND R.D MODELS WITH CUR- VATURE 

The relative expansion of the universe is parameterized by a time dependent scale factor. 

We solve the Freidmann equations for different cases: 

 For matter dominated, k = 1 closed universe 

 

(a˙a) = − πGρ .a0 
Σ3 

− 
 1  

(64) 

3 

.
da 

Σ2 

 

 

0 
a a2 

8πG 3 

da 
= 

.
8πG

ρ0a
3 − 1 (66) 

dt 3a 0
 

Taking a   = 1  dt = 
 da

 (67) 

8πG ρ0−1 

Conformal time is the time it would take light to travel from the observer’s point to the farthest 

observable distance. It is denoted by η, and follows the below relationship: 

 

 

Therefore, 

dη = 
dt

 

a 

 

(68) 

∫ 

dη = 

∫

 

  da  

.
8πGρ0 − a2 

(69) 

Let 
.
4 πGρ0

Σ 
= A    

  Now, ∫ 

dη = 

∫

 

d
t 

= 
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A 

0 c 

0 

   da  

√
2Aa − a2 

(70) 

.
a − A 

Σ2
 

2aA − a2 

(71)
 

A2 

 

a  da  

0   A

.

1 − 
.

a−A 
Σ2 

 

(72) 

 

Let a - A/ A = x, therefore dx = da/A. Let x = sinθ , dx = cosθdθ So θ = sin−1x 
∫ x ( 

osθdθcosθ (73) 

x 

dθ (74) 

0 

Therefore, putting the limits , x = sonθ  

[sin−1x + c]
x
 

 

(75) 

A 

∫ 

∫ 

1 − = 
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A 

2(Ω  − 10 

A 2 

2 A 

3 0 

Putting x = 
.

a−
a

A 
Σ
 

∫  

dη = sin−1 

.
a − A 

Σ 

+ 
π
 

 

 

(76) 

sin 
.
η − 

π 
Σ 

= 

.
a − A 

Σ 

(77) 

−cosη = 

.
a − A 

Σ 

(78) 

 

Therefore, the solution for scale factor is : 

a = A(1 − cosη) (79) 

Now, A = 
.

4πGρ0

Σ 
= H2q, where q is the decceleration parameter 

 

H2 =
    1  

2q − 1 

A =
   q0  

2q0 − 1 

For matter dominated universe, q = Ω0/2 ; A = 
.

2 
Ω0

 

 

(80) 

 

 

1 

Σ
. Hence, the solution for a is: 

 

 

 

Now, dτ = adη, therefore: 

(Ω0− 

a = 

.
  Ω0 

Σ

(1 − cosη) (81) 

t − t0 = adη (82) 

Let t0atη = 0 which is the case for Big Bang, 

t = A(η − ηsinη) (83) 

Thus the solutions for time dependent scale factor a(t) and t for matter dominated closed universe are 
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2(Ω  − 10 
. Σ

=  (   −

 ) 

8 

 

a = 

.
  Ω0 

Σ

(1 − cosη) 

t 
  Ω0  

η ηsinη 

2(Ω0 − 1 

 For radiation dominated, k = 1 closed universe, Ω 

 

(84) 

 

.
ȧ

Σ2 

 

 

= 
3 

πGρ0 

.a0 
Σ4 

 

 

 k  

− 
a2 (85) a a 
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. 

− 1 

3 

3a4 − 
a2 (86) 

.
ȧ

Σ2 

 

 

8πGρ0  1 

da 
= 

.
8πGρ0 

− 
 1 

 

(87) 

dt 3a4 a2 

Since, dτ = adη : 

∫ 

dt = 

∫

 

∫ 

dη = 

∫

 

    da  

 

 

8πGρ0 3a2 

  da  

√
8πGρ0 − a2 

 

(88) 

 

 

(89) 

Let 
.
8 πGρ0

Σ 
= A    

∫ 

η = 

∫   da  

√
A − a2 

(90) 

∫ 

dη = 

∫
  da 

≈ 

∫ 

√ 
dx 

 

 

 

 

(91) 

   

where x = a√
A

 

√
A(1 − 

.
√a 

Σ2

)
 1 − x2 

 

 

Therefore, 

dx 

√
1 − x2 

= sin−1x + c (92) 

∫
  da  

 

 
√ 

a 

A 

= 

   

∫ 
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− 

− 

0 

−1 

.
 a 

Σ 
 

On integrating dη    

A(1 − 

.
√a 

Σ2

)
 

 

 

= sin √
A

 (93) 

√
Asinη = a (94) 

 

∫ 

adη = 

∫ 

dt 

t − t0 = 

∫ √
Asinη    

 

(95) 

Let η = 0, so t= 0, which makes t0 = 
√

A, because t - t0 = 
√

Acos(0). Rewriting the above 

integral: 

t = 
√

Acos(η)+ 
√

A (96) 

t = 
√

1 − cosη (97) 

 

A = 2H2q; q = 
4πGρ

 
 

(98) 

0 
3H2 

A 
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. 

. 

. 

−

 

8 

. Σ 

 
 

 

 

Therefore, 

A = 
 2q  

2q − 1 

 

 

 

 

 

a = 
 2q 

sinη 

2q − 1 

 

 

t = 
 2q   

(1 cosη) 

2q − 1 

(99) 

 

 

 

 

 

 

(100) 

 

 

 

 For matter dominated, k = -1 open universe, Ω > 1 

 

.
ȧ

Σ2 

 

 

= 
3 

πGρ0 

.a0 
Σ3 

 

 

 1 

+ 
a2 (101) 

 

 

 

On simplifying, we get: 

da 2 

dt 

8πGρ 

= 
3a 

+ 1 (102) 

 

 

 Since we 

now that dη 

= dt/a 

 

 

a a 
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3 

3 

∫ 

A 

0 2aA + a2 

 

Let A = 4πGρ 3 

∫ 

dt = 

∫

 

 

∫ 

dt = 

∫

 

   da  

.
8πGρ  

+ 1
 

  da  

.
8πGρa 

+ a2 

 

(103) 

 

 

 

(104) 

η − η 
a  da  

√ 

 

(105) 

For the above equation, 
.
A+a 

Σ2 
− 1 = 2Aa + a2, which can be replaced in the denominator. The 

equation becomes: 

0 = 
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− 

A 

. 

.

√

 

. Σ 

∫ 

√ 
1

 

    x2 1 

   = ln|
√

x2 − 1 + x| + c 

(106) 

Where x = 
.
A+a 

Σ
. Equation (105) becomes: 

...A + a Σ2 

 

A + a 

= ln 

. 

A − 1 + A (107) 

. 

 

= ln ..a .2aA + a Σ2 + 1 + . 

 

(108) 

   A 

 

The identity cosh−1x = ln(x + x2 − 1) applies here: 

η = cosh−1    1 + a (109) 

A 

Therefore, the solutions for a(t) and t are as given below: 

 

Since dt = ∫ dηa 

coshη = a + A 

A 

a = A(coshη − 1) 

(110) 

 

t = A(sinhη − η) (111) 

 For radiation dominated case, k = -1 open universe 

 

From the Freidmann equation, 

.
ȧ

Σ2 

 

 

 
= 

3 
πGρ0 

a 

A 

a 

. 
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8 

. 

+ 1 

   = 

3 A 

∫ 

√ 

√
A

 

.a0 
Σ4 

 

 

 

 

 1 

+ 
a2 (112) 

da 
= 

.
8πGρ 

+ 1 (113) 

dt 

∫ 

dt = 

∫

 

3a2 

   da  

 

 

8πGρ 3a2 

 

 

(114) 

a 

dη 

0 

  da  

√
A + a2 

 

(115) 

∫ a 

dη √ 
 da  

√ 

 
 

(116) 

where, A = 

.
8πGρ 

. Let a√   be x. So, dx = da/
√

A 

 

 

= ln| 1 + x2 + x| + c 

= sinh−1x 

−1 . a  Σ 

 

 

 

(117)

 

a 

∫ 

0 A A + (a/A)2 

= 
∫ 

   

= sinh 
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−2q0 

Σ 

.

 2q 

. 

−

 

Again, the requirement η = 0 at a = 0 sets η0 = 0, so we have the solution for a : a = √Asinhη

 (118) 

Therefore, since A = .1 2q0    

 

 

a = 
0
   sinhη (119) 

1 − 2q0 

Time ∫ dt = ∫ adη, so integrating the above equation we get, 

t − t0 = √Acoshη (120) 

At Big Bang η = 0, hencet = 0, sot0 = √A, 

t =  2q0    (coshη 1) (121) 

1 − 2q0 

Equation (119) and (121) are the solutions for a(t) and t for a radiation dominated open universe. 

Figure 7: The image below is the graphical representation of open closed and flat universe as a function of scale 

factor a(t) and time t 5 

 

 

In absence of a cosmological constant, the fate of the universe depends on the value of k. In 

this case, the fate of the universe is actually analogous to firing a rocket on Earth. If the velocity of 

the rocket is too low, it will be less than the escape velocity. Its trajectory will be a parabola, and it 

will crash back to the ground. If its velocity is equal to the escape velocity, it will just barely escape, 

and might go into orbit. If its velocity is higher, it will leave Earth completely, and head off into 
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interplanetary space. You could think of each of these as analogous to different values of k. If k = +1, 

the universe will not be expanding fast enough to overcome its own gravity. The expansion will slow 

down, stop, and reverse, and the universe will recollapse and end in a Big Crunch 5. If k = 0, the 

universe will be just fast enough for it to escape this fate. If k = -1, the velocity will be higher than 

that, and it will also expand indefinitely. Therefore, a universe with positive curvature will exist for a 

finite length of time, while a universe with flat or negative curvature will exist for an infinite length 

of time. Therefore, universes with k = +1 are both spatially and temporally closed, while universes 

with k = 0 or k = -1, are both spatially and temporally open. 
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≈ × 

∫ 

. 

−Ω

m 

H0 
1 + 

.

1−Ωm 

Σ 

x3 

H0 √
Ω

m
 1 + 

.

1−Ωm 

Σ 

x3 

0 

CALCULATING THE AGE OF THE UNIVERSE FOR Ωm + ΩΛ =1, where Ωk = 1 

We know that Ωm + ΩΛ + Ωr + Ωk = 1 and Ω0 = Ωm + ΩΛ + Ωr. We consider a universe dominated by 

matter and Dark energy, which is the current scenario and Ωr 5  10−7  which is a negligible value . 

Equation (45) gives the age of the universe as derived previously, where x = a/a0 

t0 

dt 

0 

 

= t0 

 

(122) 

 1 1   dx  

0 = √ 

 

 

(123) 

H0    0 (1 − Ω0)+ Ωrx−2 + Ωmx−1 + ΩΛx2 

For Ωm, ΩΛuniverseΩm + ΩΛ = 1 = Ω0 = 1 

ΩΛ = 1 − Ωm; Ω0 = 1 and Ωr is negligible 

t  = 
 1  

∫ 1 

√
  dx  

 

 

(124) 

H0    0 0 + 0 + Ωmx−1 + (1 − Ωm)x2 

 1 
∫ 1   

.
 dx  

 

 

 

(125) 

 1 
∫ 1   

. 
dx

√
x  

(126) 

 

 

Let x3 = 1 
Ωm

 sinh2φ/2, so that we get an equation of the form: 

  1  

√
1 + sinh2φ/2 

 

 

(127) 

On substituting x3in(126)  1  
∫ 1    

dx
√

x 

Ω

m 

Ω

m 

∫ 

= 

= 

0 Ω

m 

x 

0 

t 
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(128) 

= 
H0

 

Differentiating x3 we get, 

0 
√

Ωm 
√

1 + sinh2φ/2 

dx = 
  1   

.
 Ωm   

Σ 
φ φ 

 

(129) 

3x2 1 − Ωm sinh 
2 

cosh 
2
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−Ω

m 

−Ω

m 

Ωm 

3x 
√
−Ω

m 

2 2 

 1 
∫ 1 
√

x
√
Ωmsinhφ dφ 

Substituting it in equation (128) 

 1 
∫ 1 

√
x 

1
2 

.

1 
Ωm 

Σ 
sinh

φ
 cosh

φ
 dφ 

 
  

 

 

It can be obtained that:: 

 

H0 0 

 

3x2 

(1 − 2 

Ωm) 

(131) 

 

sinh
φ

 

2 

1 − Ωm 

Ωm 

 

(132) 

 

Putting this value in (131) current time t0 will give: 

t = H−1 
∫ 1 

√ 
dφ

 
 

(133) 

0 
0 1 − Ωm 

−1  (φ1 − φ0)  

t0 = H0    
3
√

1 − Ωm 
(134) 

If x = 0 in x3 = 
.

1 
Ωm

 

If x = 1 in x3 = 
.

1 
Ωm

 

 
Since, 1 - Ωm = ΩΛ 

Σ 
sinh2φ/2; φ = 0, therefore φ = 0 

Σ 
, there f ore    

φ = 2sinh−1

.
1 − Ωm

 

 

 

 

 

 

(135) 

H0 0 Ωmcoshφ/2 

.

=

 

= (130) 

(136) 

0 
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= 
H0

 
3
√
ΩΛ 

sinh 

Ωm 

0 
 1  

Σ
   2  −1

. 
ΩΛ 

Σ

 

 

Equation (136) is the age of the universe for a radiation and matter dominated flat universe with 

Ωk = 1. To verify this, let Ωλ = 0.7, Ωm = 0.3, which are the current values of density parameters for 

dark energy and matter respectively: 

1 

 

 

On solving, we get 

t0 = 
H0 

Σ
0.8sinh− (1.52)

Σ 
(137) 

1 

 

t0 = 0.96H0
−1

 (138) 

Equation (138) closely gives the current value of the age of our universe which is matter and Ω 

dominated flat universe. Since this calculation involved two of the four parameters, the calculation 

has been simpler and can be done analytically as shown above. We try taking a few different values 

for Ωm and ΩΛ to obtain t0 for the same. 

1. Let Ωm = 0.6; ΩΛ = 0.4 

 

Table 3: Age of the universe for different parameters  

(144) 

 

Ωm ΩΛ t0 

0.3 0.7 0.96H−
0 

1
 

0.6 0.4 0.8H−
0 

1
 

0.9 0.1 0.689H−
0 

1
 

0.1 0.9 1.27H−
0 

1
 

 

The term H−
0 

1  is the th, which is the Hubble time, where as usual we used H0 = 72 km 

s−1Mpc−1. tH = H0
−1 = 13.6 Gyr, where 1 Gyr = 109  yrs.  Finding the estimated age of the universe 

t 
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through practical experiments and verifying them with the age theoretically implied by the 

cosmological models, is a valid trial to check these models. Cosmological constants have negative 

pressure which is why they are responsible for expansion of the universe. For Big Bang models with 

zero cosmological constant and positive matter density, the actual age was found to be considerably 

younger than this Hubble time, depending on the density of matter. After the The presence of dark 

energy implies that the universe was expanding more slowly at around half its present age than today, 

which makes the universe older for a given value of the Hubble constant. 
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∫ 

FOR A CLOSED OR OPEN UNIVERSE WITH Ω>1 or Ω<1, (1 - 

Ωk) ƒ= 0 

 

t0 

dt 

0 

= t0  

(145) 

 1 1   dx  

0 = √ 

 

 

(146) 

H0    0 (1 − Ω0)+ Ωrx−2 + Ωmx−1 + ΩΛx2 

It is a tedious task to solve the above integral analytically. So, taking the numerical approach I 

devised a code in Python(Spyder 2.7) to solve for the value of t0 for different t0 for different ranges of 

scale factor a(t). 

CODE: 

From scipy. integrate import  quadimportnumpy def integrand ( a ) : 

r e t u r n 1   / ( ( ( omega r ) / ( a / a0 ) ∗∗ 2 + 

i / ( a / a0 )   +   j   ∗ ( a / a0 )   ∗∗  2  +   ( 1  −  omega o ) ) ∗∗ 0 . 5 ) 

omega r = 0 . 0 

omega o = 0 . 0 a0 = 1 

x  =  numpy . a r a n g e ( 0 . 0 , 1 . 0 1 , 0 . 1 ) y = numpy . a r a n g e ( − 1 . 0 , 1 . 0 1 , 0 . 1 ) 

l i s t = [ ] 

f or i i n x : 

f or j i n y : 

ans , e r r   =  quad ( i n t e g r a n d , 0 ,   1 ) 

omega o   =   omega r   +   j   +   i  i f 0 . 9 5 < ans < 1 . 0 5 : 

p r i n t ( l i s t ) 

l i s t . append ( ( i , j , ans ) ) 

∫ 

t 
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The code given in the previous page is specifically made for Python as mentioned pre- viously. 

The answer, which is the age of the universe can be obtained in various ranges and these points 

belonging to a certain range can be represented on the graph using contour lines, each coloured line 

belonging to a specific range for the age t0. It is implicit from the below graph that corresponding to 

different values of matter and DE energy the age of the universe ,as a multiple of Hubble time tH , 

varies with values of Ωm and ΩΛ. 

Figure 8: The image in the side is the graphical representation of the age of the universe as a function of Ωm and 

ΩΛ 

 

 

Another manifestations of these calculations and graph is that with the increase in age of the 

universe, the matter density decreases and on the contrary the Dark energy density increases or vice 

versa. The current age of the universe is around 13.8 billion years. For matter dominated universe, 

a(t) ∝ t2/3; increase in matter causes increase in deceleration (as an effect of gravity) as a result.  

As acceleration decreases (due to extra matter) a(t) decreases which in turn causes decrease in 

age/time. Similarly, as matter density decreases the acceleration increases, hence the scale factor also 

increases. The age of the universe increases with decrease in matter density. 

As ΩΛ increases, the acceleration of the universe increases and hence the scale factor 

exponentially increases since a(t) ∝ eHt . As the time-dependent scale factor increases the age of the 

universe also increases. For an extreme case such as ΩΛ = 1, the age of the universe is infinite. 

General relativity predicts a ’Big Bang’ singularity, the beginning of the universe as a 

singular state of infinite density which is then followed by expansion with various stages6. Not 

diving into specifics, the earliest dominating energy was radiation, which diminished the effects of 
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the spatial curvature term Ωk and the universe must be flat then have been flat then. As the radiation 

dominated era wipes off and matter becomes pre-dominant the curvature term emerges due to nature 

of the matter The positive curvature models recollapse and end in a ’Big crunch’. 
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