
Dhingra Garima et. al, IJSRR 2024, 13(4), 78-88 

IJSRR, 13(4) Oct. – Dec., 2024                                                                                                                       Page 78   

Research Article                 Available online www.ijsrr.org                                  ISSN: 2279–0543 
 

International Journal of Scientific Research and Reviews 

 

Dynamical Properties of Liquid cesium at 338 K 
 

Dhingra Grima
1*

  
 

1 
Department of Physics, Maharshi Dayanand University, Rohtak, Haryana, India-124001 

 

 

ABSTRACT 
                A theoretical framework is applied to calculate the dynamical structure factors of an alkali 

metal, liquid cesium (Cs). The study is conducted at 338 K, where 1.825 grams of cesium atoms 

occupying one cubic centimeter of the liquid The computations span a wave vector range of κ: 0.3 Å⁻¹ to 

2.5 Å⁻¹, to cover the primary peak region of the static structure factor of liquid cesium at concerned 

temperature and density conditions. The approach slots in interparticle interactions within the liquid to 

compute various dynamical quantities, such as the dynamical structure factor and the current-current 

correlation function. These properties, in turn, provide insights into other key parameters, including 

collective mode frequencies, sound velocity, and transport properties. This framework reports results for 

various dynamical properties of linteracting liquid of cesium including dynamical structure factors, 

current-correlation functions, collective mode frequencies, diffusion coefficient, and sound velocity 

across the entire κ range. A comprehensive method, referred to as the modified microscopic theory, is 

provided to calculate the full dynamics of liquid potassium at its melting temperature by integrating 

interparticle interactions and the system’s dynamics. 
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1. INTRODUCTION 

              Studying the collective dynamics of fluids has always posed a significant challenge, particularly 

because the degree of correlation among their particles can vary from strong to weak, and the fluids 

exhibit both individual and collective particle motion. Experimental techniques, such as thermal neutron 

inelastic scattering and inelastic X-ray scattering, are commonly employed to investigate the collective 

motion of interacting particle systems, but they have certain limitations. The inelastic neutron scattering 

(INS) method, for instance, results in a mix of incoherent and coherent scattering cross sections in nearly 

equal proportions, 
1,2

 which complicates the extraction of the coherent dynamical structure component 

from the data. On the other hand, inelastic X-ray scattering, when performed using high-resolution 

synchrotron radiation sources, can provide pure coherent scattering data 
3
. Several theories 

4,7
 have been 

developed to explain the complex dynamics of fluids, leading to explanation of these involved 

dynamical states through certain space-time dependent correlation functions. The dynamical structure 

factor, is such a function which is obtained from the space-time dependant function when Fourier 

transformed and can describe how a liquid responds to external disturbances, offers valuable insight into 

the collective behavior of its atoms.  

               Cesium, is the heaviest alkali metal with atomic number 55 and atomic mass of 132.7 a.m.u. 

When compared to other lighter alkali metals, liquid lithium and liquid sodium, it stands out as a much 

better coherent scatterer of neutrons. The contribution of coherent scattering cross-section, for liquid Cs, 

in an inelastic scattering spectra is a way higher (~16 times) 
8
 than the incoherent cross-section, and 

hence, it turns out be predominantly coherent spectra. This makes cesium a suitable choice for studying 

collective modes in simple, highly coupled liquids through INS study.  Such a study has been conducted 

and also has been explained theoretically for an interacting liquid of cesium atoms near its melting 

temperature, at 308 K. The study revealed that dynamical structures for liquid cesium are endowed with 

well-formed collective modes even at higher high momentum transfers. These studies, however, 

remained limited to a certain temperature only and the higher temperatures, which may carry 

information for dynamical behaviour of the metallic liquid along the phase-curve, remained un-

investigated. Such an effort has been made in the current study to theoretically investigate the dynamical 

properties and hence, collective dynamics of a liquid of cesium atoms, above its melting point (~ 301 

K). The liquid is endowed with 0.824x10
22

 particles occupying one cm
3
 of the system and at relative 

mass density of 0.99 as compared to that at the melting point, is essentially a system of strongly 

interacting cs atoms. Among some other reported work related to distinct properties of the cesium in its 

liquid state, no data has been reported at the considered temperature, to best of my knowledge. 

               In this study, the dynamical structure factors and, consequently, the collective dynamics of 

liquid cesium has been predicted using an approach that incorporates the liquid's microscopic dynamics. 

The theory applies appropriate time averages to the solution of the equations of motion for moving 

particles, examining how an interacting, correlated fluid, exhibiting time-dependent disorder, responds 

to external radiation (such as X-rays or neutrons) 
7
. The familiar Fluctuation-Dissipation Theorem links 

the Fourier transform in space-time of the imaginary part of the density response function to the 

dynamical structure factor. The theory incorporates correlations between distinct particles, previously 

neglected, by introducing a characteristic relaxation time 
9
. This relaxation time is influenced by key 
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properties of the system, such as the static structure factor, density, temperature, mass, interaction 

potential, and diffusion coefficient. 

               Within the theoretical framework, the diffusion coefficient is extended to a wave-vector-

dependent form, with specific values assigned to each wave vector. The theory is further refined to align 

with experimentally measured values for fluids with varying physical parameters. This allows for an 

accurate depiction of the intermediate self-scattering function by making the diffusion coefficient 

frequency-dependent, rather than relying on numerous arbitrary parameters. Previous work has used this 

modified microscopic theory to explain the collective dynamics of various correlated liquids 
10-19

. In this 

study, the same approach is applied to determine the collective dynamics of liquid cesium. 

2. MATHEMATICAL FORMALISM 

               Microscopic theory examines the microdynamics of a fluid to describe density fluctuations and 

particle motion. To better understand the complex space-time-dependent correlation functions, they are 

defined and approximated to derive results for the dynamical structure factor. In earlier versions of the 

theory, and when calculating the dynamical structure factors, correlations over time were not taken into 

account. As a result, the resulting dynamical structure factors were overly damped and did not match the 

spectral lineshapes observed experimentally. To overcome this limitation, Tewari et al. 
9
 modified the 

theory by introducing a characteristic relaxation time to account for the missing correlations. This 

updated version of the microscopic theory has successfully explained the dynamical structure factors of 

a number of liquids.  

The characteristic time in the theory is given by the following expression: 
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In the expression (2)  = D
2 , D is the diffusion coefficient that varies with wave-vector, κ, β=(kBT)-1, m is the 
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The frequency   occurred in the expression (1) and (2) is given as follows:  
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The elastic frequency E  and 0r  occurred in the expression (2) are given respectively, as: 
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Here,  rV  is the inter-atomic potential and z is the space coordinate. 

 

And on approximating 
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The peak of the delta function is r = 0r . 

In this form of the theory, the dynamical structure factor takes the following form: 
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Here, in the expression (1), β’’ = Deff κ
2
, Deff is ω–dependant diffusion coefficient, and, ϒ = τ(κ)

-1
, given by expression (1) 

 

The current-current correlation function  is given by the following expression: 

    

                   (7) 

3. RESULTS AND DISCUSSION 

               As outlined in the mathematical section, the evolution of equilibrium dynamics in any liquid 

using the modified microscopic theory requires knowledge of the inter-particle interaction potential. 

Therefore, it is essential to determine a suitable interaction potential for the liquid under the given 

physical conditions. To calculate the dynamical structure factors, it is more appropriate to use an 

interaction potential that is derived from or connected to the static structure factor, rather than relying on 

other algebraic mathematical formulations. Such an inter-particle potential has been worked in the 

literature 
20

 for liquid cesium to produce the static structure factor in agreement with the experimental X-

ray diffraction data for the static structure factor S(κ) reported by Hujiben et al. 
21

. Though the potential 

form described in the study seems consistent in pattern and also with the physical quantity of interest to 

be produced, S(κ), the temperature for system of Cs atoms is rather lower, 303 K. Hence, another form 

of interaction potential as described by Hujiben etal. 
21

 while reporting the X-ray diffraction data, has 

been implied in the present work. The proposed potential is deduced using hyper-netted chain 

approximation and has successfully reproduced the experimental results for the static structure factor of 

liquid Cs at a temperature of 338 K. Thus, it has proven to be a more appropriate choice for this 

investigation. The suggested interaction potential exhibits a variation with interatomic distance which is 

peculiar for metallic liquids consists of both a hard core and a long-range oscillatory component 

generated through the screening of electrons in the presence of cesium ions. 

               Substituting the interaction potential into expression (4) results in the maximum Einstein 

frequency E and from expression (5) results in ro, turn out to be 4.98 × 10¹² s⁻¹ and 4.92 Å, 

respectively. These calculations are based on the pair distribution function g(r), obtained from the 

Fourier transform of the experimentally measured static structure factor and derived using the 

interaction potential for liquid cesium 
20

. These values are substituted in expression (3) for the 

evaluation of κ–dependant frequency, ωκ and further these results are then inserted into expression (1) to 

determine the single characteristic relaxation time. The characteristic relaxation time, τ(κ), is a key 

component of the modified microscopic theory, accounting for the correlations between distinct particles 

at different wave-vector values, κ. It represents the evolution of system properties, such as particle 

positions or densities, over time, considering wave-vector-dependent correlations. In essence, it 

describes the timescale over which the system returns to equilibrium after a disturbance, with this 

timescale varying based on the wave-vector. The diffusion coefficient, D, in expression (1), is 

introduced fitting parameter to ensure that the zeroth sum rule is satisfied for a given wave-vector, κ. As 
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a result, the modified microscopic theory complies with all sum rules for liquids. With the relaxation 

time and diffusion coefficient in place, the detailed dynamical structure factors, S(κ,ω), are then 

computed. These structure factors characterize the system's fluctuations in both space and time, offering 

crucial insights into its dynamic behaviour and have been derived using expression (6), which connects 

S(κ,ω) to τ(κ), ωκ, mas & temperature and  also to the diffusion coefficient.  

 

Figure 1: Evaluated results for the dynamical structure factor,  ,S   of liquid cesium at 338 K versus frequency,

: (—■—) present theory at =0.3 Å
-1 

, = 0.5 Å
-1 

and = 0.9 Å
-1

. 

Figure 1(a):  Variation of the diffusion co-efficient with wave-vector : with (- - -). 

 

               The dynamical structure factors were computed using expression (6) for various wave-vector 

values ranging from 0.3 Å⁻¹ to 2.5 Å⁻¹. The results, which show the variation of the dynamical structure 

factors with frequency ,ω, are presented in Figure 1, for wave-vectors of 0.3 Å⁻¹, 0.5 Å⁻¹, 0.9 Å⁻¹,  

represented by a solid square curve (−■−) and in Figure 2 for wave-vectors of 1,2 Å⁻¹, 1.6 Å⁻¹, 2.5 Å⁻¹,  

shown solid-square curve (−■−). In these calculations, the diffusion coefficient, Deff = D. As shown in 

the figures, for smaller wave-vector values, up to κ < 0.9 Å⁻¹, the dynamical structure factors exhibit a 

three-peak form, with the presence of Brillouin peaks. At =0.9 a minute side hump can be noticed in the 

structural function.  However, as the wave-vector increases, κ > 0.9 Å⁻¹, the dynamical structure factors 

turned more damped, and the Brillouin peaks are no longer observed.  The pattern of variation is,  

               hence, is typical. To provide a comparison, the calculated results are contrasted with data from 

an inelastic neutron scattering (INS) study of liquid cesium 
8
, which was conducted at a lower 

temperature of 308 K . The comparison has been shown at four different wave vector values, κ = 0.3 

Å⁻¹, κ = 0.9 Å⁻¹, κ = 1.6 Å⁻¹ and κ = 2.5 Å⁻¹. The self-diffusion coefficients, which act as fitting 

parameters in the theory and thus exhibit wave-vector dependence, were determined during the 

calculation of the dynamical structure factors. The earlier microscopic theory 
7
 did not satisfy the 

significant zeroth sum rule in its generated dynamical structure factors. 
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Figure 2: Evaluated results for the dynamical structure factor,  ,S   of liquid cesium at 338 K versus frequency,

: (—■—) present theory at = 1.2 Å
-1 

, = 1.6 Å
-1 

and = 2.5 Å
-1

. 

Figure 2(a):  Variation of the diffusion co-efficient with wave-vector : with (- - -). 

 

              Moreover, the diffusion coefficient is related to the determination of the characteristic time. In 

Figure 1(a) and 2(a), variation of the diffusion coefficient with wave vector has been plotted with dashed 

curve (- - -). This can be observed from the figure that the overall variation in the diffusion coefficient is 

about more than an order where it varies for half an order upto κ = 0.9 Å⁻¹ and for 0.9 Å
-1

 <   ≤ 2.5 Å
-
1, 

it again varies for more than half an order.  

 

Figure 3: Dynamical structure factor,  ,S   of liquid cesium versus frequency, : (—■—) present theory at T=338 

K; (−●−) experimental results at T= 308 K. 
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               The experimental data from INS study are shown in Figure 3 as solid-circle curves (−●−), 

while the theoretical results are represented by solid-square curves (−■−) for all κ values. The 

comparison indicates that, at the lower temperature, the sharper and more well-defined structures with 

more prominent Brillouin peaks are present, as for T=308 K structures from INS study exhibit a clear 

defined shoulder peak at κ = 0.9 Å⁻¹ . Additionally, the peak positions shift towards larger frequencies at 

the lower temperature of 308 K. The observed differences between the dynamical structure factors from 

the two studies can be attributed to the temperature difference. 

 

Figure 4(a): Zero dynamical structure factor,  of liquid cesium versus frequency, : (───) present theory at T=338 

K; (− ∙ −) experimental results at T= 308 K. 

 

Figure 4(b): Variation of  diffusive frequency, Dκ
2
 with κ : (───). 

 

              In Figure 4(a), the zero frequency dynamical structures for liquid cesium obtained from the 

present computations, have been compared to the earlier INS study performed at T=308K. They are 

plotted as against wave vector: with solid curve (────) at 338 K and dashed-dotted curve (− ∙ −) INS 

results at 308 K. The zero dynamical structure factor, S(κ,ω=0), is a significant factor to ensure the 

enhancement of the modified microscopic theory over the older theory of Hubbard and Beeby [16] 

which was not efficient enough to generate accurate zero dynamical structure factors. In present form, 

the microdynmics can be solved to obtain quantitative S(κ,ω=0) at both temperatures, however, the 

results for S(κ,ω=0) are higher for the higher temperature and further, are shifted towards larger κ-

values. The trend for variation in both temperature considerations, however, remains the same. In Figure 

4(b), the variation of Dκ², corresponding to the inverse of the diffusive time as obtained in the present 

calculations, is plotted against the wave-vector, κ with a solid curve (────).  This can be observed 

from the figure that the variation of Dκ² with κ yields a dispersion relation of diffusive frequencies.   

              In Figure 5(a), the dispersion relation of collective mode frequencies, ωp, for liquid Cs at 338 K 

is shown with solid-squares (■). The values of ωp represent the peak positions of the  
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Figure 5(a): Dispersion relations for liquid Cs at 338 K: (■) p  deduced from current correlation function. 

Figure 5(b): Velocity of sound in liquid Cs at 338 K as depicted from figure 5(a) vs. wave-vector, : (●). 

 

computed current-2 correlation functions for different wave-vector values, plotted against the frequency 

ω. As seen in the figure, the frequencies of the collective modes, ωp, initially increases with κ to a 

maximum at κ = 0.9 Å⁻¹, after this, the frequencies decrease for higher wave-vectors to attain a 

minimum value at κ = 1.6 Å⁻¹ and then increases again. Thus, the typical form of the dispersion relation 

for liquid Cs is obtained across the entire wave-vector range. Figure 5(b) shows the sound velocities, 

represented by solid-circles (●), deduced from the dispersion relation in Figure 5(a) and plotted as a 

function of the wave-vector κ. This can be depicted form the figure when extrapolated to κ=0, the κ-

dependant sound velocity turns out to be nearly 995 m/s which is closer to the experimental 

measurement 
22

 (~990 m/s). 

4. CONCLUSION 

              The study concludes that the modified microscopic theory effectively predicts the collective 

dynamics of liquid Cs at 338 K, representing a significant improvement over the previous microscopic 

theory. This approach incorporates particle correlations by defining a relaxation time that accounts for 

inter-particle interactions. As a result, it allows for the calculation of key properties such as the diffusion 

coefficient, collective modes, and sound velocity alon with the dynamical structure factors. By defining 

the relaxation time to reflect the specific particle correlations, the theory provides precise results for 

these properties. 
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