

Research article Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Geometric Mean −**Equitable Labeling of Some Graphs**

Kaneria V J ¹ , Meghpara Meera* and Khoda Maulik³

¹Department of Mathematics, Saurashtra University, RAJKOT*-*360005. E*-*mail: *Kaneria_vinodray_j@yahoo.co.in* ²R. K. University, RAJKOT*-*360020. E*-*mail: meera.meghpara@gmail.com ³V. V. P. Engineering College, RAJKOT*-*360005. E*-*mail: mjkmaths@gmail.com

ABSTRACT

In this paper we proved that $K_{mn}(m, n \ge 4)$ is not a geometric mean 3 –equitable graph, while caterpillar $S(x_1, x_2, ..., x_t)$, $C_n \odot tK_1(t \geq 2)$ both are geometric mean 3 -equitable graphs. We also proved that $C_n \odot K_1$ is not geometric mean 3 –equitable graph, when $n \equiv 0 \pmod{3}$, while it is geometric mean 3 –equitable graph, when $n \equiv 1, 2 \pmod{3}$.

KEY WORDS : Caterpillar, corona graph, complete bipartite graph, cycle, star graph, geometric mean 3 −equitable graphs.

AMS subject classification number:05C78.

***Corresponding author**

Meera Meghpara

R. K. University, RAJKOT

(Gujrat)*-*360020.

E*-*mail: meera.meghpara@gmail.com

I. INTRODUCTION:

The concept of cordial and 3 −equitable labeling was introduced by Cahit^{1, 2}. The labeled graphs have several application in the areas of radar, circuit design, cryptography etc. Mean cordial labeling was introduced by Ponraj, Sivakumar and Sundaram⁶.

Geometric mean cordial labeling of graph was introduced by ChitraLakshmi and Nagarajan ³ and they have proved that P_n , C_n ($n \equiv 1,2$ (mod 3)), $K_{1,n}$, K_n ($n \le 2$), $K_{2,n}$ ($n \le n$ 2) are geometric mean cordial graphs and $K_n(n > 2)$, $K_{2,n}(n > 2)$, $K_{n,n}(n \ge 3)$, W_n are not geometric mean cordial graphs.

By survey of literature geometric mean cordial labeling defined by ChitraLakshmi and Nagarajan [3] its name should be geometric mean 3 −equitable labeling as they are using $e_f(0)$, $e_f(1)$ and $e_f(2)$. For a (p, q) graph G, a function $f: V(G) \rightarrow \{0, 1, 2\}$ with its induced edge labeling function $f^*: E(G) \to \{0,1,2\}$ defined by $f^*(uv) = \left[\sqrt{f(u)f(v)}\right]$ is called geometric mean 3 – equitable labeling if $|v_f(i) - v_f(j)|$, $|e_f(i) - e_f(j)| \in \{0, 1\}$, where $v_f(x)$ and $e_f(x)$ denotes the number of vertices and edges with x label respectively, where $x, i, j \in \{0, 1, 2\}$.

II. MAIN RESULTS :

Theorem − **2**. **1**: Caterpillar $S(x_1, x_2, ..., x_t)$ is a geometric mean 3 –equitable graph.

Proof :Let $V(S(x_1, x_2, ..., x_t)) = \{v_i/1 \le i \le t\} \cup \{v_{ij}/1 \le j \le x_i, 1 \le i \le t\}$ and $E(S(x_1, x_2, ..., x_t)) = \{v_i v_{i+1} / 1 \le i \le t - 1\} \cup \{v_i v_{ij} / 1 \le j \le x_i, 1 \le i \le t\}.$ It is obvious that $p = x_1 + x_2 + \cdots + x_t + t$ and $q = p - 1$ (as caterpillar is a tree). We redefine $V(S(x_1, x_2, ..., x_t)) = \{u_k/1 \le k \le p\}$ by taking $u_i = v_i (1 \le i \le t), u_{t+j_1} = v_{1j_1} (1 \le j_1 \le k)$ x_1 , $u_{t+x_{1+j_2}} = v_{2j_2} (1 \le j_2 \le x_2)$, ..., $u_{t+x_{1+x_2}+\cdots+x_{t-1}+j_t} = v_{tj_t} (1 \le j_t \le x_t)$.

Let
$$
p_1 = \left[\frac{p}{3}\right], p_2 = \left[\frac{p-p_1}{2}\right]
$$
 and $p_3 = p - (p_1 + p_2)$.

Define $f: V(S(x_1, x_2, ..., x_t)) \rightarrow \{0, 1, 2\}$ as follows.

 $f(u_i) = 1$, when $1 \leq i \leq p_1$ $= 2$, when $p_1 + 1 \le i \le p_1 + p_2$ $= 0$, when $p_1 + p_2 + 1 \le i \le p$.

Above defined labeling pattern give rise $v_f(0) = p_3$, $v_f(2) = p_2$, $v_f(1) = p_1$ and $e_f(1) =$ $p_1 - 1$, $e_f(2) = p_2$, $e_f(0) = p_3$. In any case it is obvious that $|v_f(i) - v_f(j)|$, $|e_f(i) - e_f(j)| \in$ $\{0,1\}, \forall i, j \in \{0,1,2\}.$ Thus, $S(x_1, x_2, \ldots, x_t)$ is a geometric mean 3 -equitable graph.

Theorem – 2. 2: $C_n \odot tK_1$ ($t \geq 2$) is a geometric mean 3 –equitable graph.

Proof :Let $G = C_n \odot tK_1$, $V(G) = \{v_i/1 \le i \le n\} \cup \{v_{ii}/1 \le j \le t, 1 \le i \le n\}$ and $E(G) =$ $\{v_iv_{i+1}/1 \le i \le n-1\}$ \cup $\{v_1v_n\}$ \cup $\{v_iv_{ij}/1 \le j \le t, 1 \le i \le n\}$. Thus, $p = |V(G)| = (t+1)n =$ q .

We redefine $V(G) = \{u_k/1 \le k \le p\}$ by taking $u_i = v_i (1 \le i \le n), u_{n+j_1} = v_{1j_1} (1 \le i \le n)$ $j_1 \leq t$, $u_{t+n_{+j_2}} = v_{2j_2} (1 \leq j_2 \leq t)$, $u_{n+(n-1)t+j_n} = v_{n j_n} (1 \leq j_n \leq t)$.

Define $f: V(G) \longrightarrow \{0, 1, 2\}$ as follows.

$$
f(u_i) = 1, \quad \text{when } 1 \le i \le \left[\frac{p}{3}\right]
$$

= 2, \quad \text{when } \left[\frac{p}{3}\right] + 1 \le i \le \left[\frac{p - p_1}{2}\right] + p_1
= 0, \quad \text{when } \left[\frac{p - p_1}{2}\right] + p_1 + 1 \le i \le p, \text{ where } p_1 = \left[\frac{p}{3}\right].

Above defined labeling pattern give rise $v_f(0) = \left| \frac{p}{3} \right|$ $\left[\frac{p}{3}\right]=\left[\frac{p-p_1}{2}\right]$ $\left[\frac{p-p_1}{2}\right], v_f(2) = \left[\frac{p-p_1}{2}\right]$ $\left[\frac{p_1}{2}\right], v_f(1) =$ p_1 and $e_f(1) = p_1, e_f(2) = \frac{p - p_1}{2}$ $\left[\frac{p_1}{2}\right]$, $e_f(0) = \left[\frac{p}{3}\right]$ $\frac{p}{3}$. In any case it is observed that $|v_f(i)$ $v_f(j)|, |e_f(i) - e_f(j)| \in \{0,1\}, \forall i, j \in \{0,1,2\}.$ Thus, G admits a geometric mean 3 – equitable labeling and so, it is a geometric mean 3 −equitablegraph.

Theorem – **2**. **3**: $C_n \odot K_1$ is not geometric mean 3 –equitable graph, when $n \equiv 0$ (mod 3) and it is geometric mean 3 –equitable graph, when $n \equiv 1, 2 \pmod{3}$.

Proof :Let $H = C_n \odot K_1$, $V(H) = \{v_i, u_i/1 \le i \le n\}$ and $E(H) = \{v_i v_{i+1}/1 \le i \le n-1\}$ ∪ $\{v_1v_n\} \cup \{u_iv_i \mid 1 \leq i \leq n\}$. Thus $p = q = 2n$.

Case−I $n \equiv 0 \pmod{3}$. Take $n = 3t$.

If H admits any geometric mean 3 – equitable labeling f , then it is only possibly when $v_f(0) = v_f(1) = v_f(2) = 2t = \frac{p}{3}$ $\frac{p}{3} = \frac{2n}{3}$ $\frac{\pi}{3}$. Since, edge label 1 under f is only possible when its both the end vertices have label 1, under f, we must have $e_f(1) \leq 2t - 1$ and $\max\{e_f(0), e_f(2)\} \geq 2t + 1$ 1. Which gives either $|e_f(0) - e_f(1)| \ge 2$ or $|e_f(2) - e_f(1)| \ge 2$. This leads to a contradiction as f is a geometric mean 3 –equitable labeling for H . Thus, H can not admits any geometric mean 3 −equitable labeling. So, it is not a geometric mean 3 −equitable graph, when $n \equiv 0 \pmod{3}$.

Case−II $n \equiv 1, 2 \pmod{3}$.

Let
$$
p_1 = \left[\frac{p}{3}\right], p_2 = \left[\frac{p-p_1}{2}\right]
$$
 and $p_3 = p - (p_1 + p_2)$.

Define $f: V(H) \longrightarrow \{0, 1, 2\}$ as follows.

 $f(v_i) = 1, \quad \forall 1 \leq i \leq p_1$

$$
= 2, \qquad \forall p_1 + 1 \leq i \leq n;
$$

 $f(u_i) = 0, \quad \forall 1 \leq i \leq p_2$

$$
= 2, \qquad \forall p_2 + 1 \leq i \leq n.
$$

Above defined labeling pattern give rise $v_f(1) = p_1, v_f(0) = p_2, v_f(2) = p_3$ and $e_f(1) =$ $p_1 - 1$, $e_f(0) = p_2$, $e_f(2) = p_3 + 1$. Since $p_3 = p_1 - 1$, $|p_i - p_j| \in \{0, 1\}$, $\forall i \in \{0, 1, 2\}$, we must get $|v_f(i) - v_f(j)|, |e_f(i) - e_f(j)| \in \{0, 1\}, \forall i, j \in \{0, 1, 2\}.$ Thus, *H* admits geometric mean 3 –equitable labeling f and so, it is a geometric mean 3 –equitable graph, when $n \equiv 1, 2 \pmod{3}$.

Theorem−2. 4: $K_{m,n}$ is not a geometric mean 3 −equitable graph, when $m, n \geq 4$.

Proof :Let $V(K_{m,n}) = M \cup N$. We take $M = \{u_1, u_2, ..., u_m\}$ and $N = \{v_1, v_2, ..., v_n\}$ both are two partite sets of $K_{m,n}$. Let $E(K_{m,n}) = \{u_i v_j/1 \le i \le m, 1 \le j \le n\}$. It is obvious that $p = m + n$ and $q = mn$.

Let $f: V(K_{m,n}) \longrightarrow \{0,1,2\}$ be any vertex labeling. To make geometric mean 3 –equitable labeling f for $K_{m,n}$, we have to choose $\max\{v_f(0), v_f(1), v_f(2)\} - \min\{v_f(0), v_f(1), v_f(2)\} \in$ $\{0,1\}$. Let $max\{v_f(0), v_f(1), v_f(2)\} = t$.i.e. $t = \frac{p}{3}$ $\frac{p}{3}$. Since, edge label 1 under f is only possible when its both the end vertices have label 1 under f . We shall take the following three cases to compute $e_f(1)$ for $K_{m,n}$.

Case-I
$$
\frac{t}{2}
$$
 \geq min{ m, n } = n (say).

It is observe that $e_f(1) \le (t - n) \cdot n = tn - n^2$.

First we shall prove here $tn - n^2 < \left| \frac{mn}{2} \right|$ $\frac{m}{3}$. Suppose not if possible.

i.e.
$$
tn - n^2 \ge \left\lfloor \frac{mn}{3} \right\rfloor
$$

\n $\Rightarrow 3tn - 3n^2 \ge mn$
\n $\Rightarrow (3(t - n) - m)n \ge 0$
\n $\Rightarrow (3(t - n) - m) \ge 0$
\n $\Rightarrow 3t - 3n \ge m$
\n $\Rightarrow 3t - 2n \ge m + n = p$
\n $\Rightarrow p + 2 - 2n \ge p$
\n $\Rightarrow 2 - 2n \ge 0$,

Which is impossible as $n \geq 4$ and so, $tn - n^2 \geq \left\lfloor \frac{mn}{2} \right\rfloor$ $\frac{\pi n}{3}$ can not holds. Thus, $e_f(1) \leq tn$ – $n^2 < \left| \frac{mn}{2} \right|$ $\frac{m}{3}$.

Case-II
$$
\frac{t}{2}
$$
 \le min{ m, n } = n (say) and $\frac{t}{2} < \frac{m}{3}$.
\n
$$
\Rightarrow \left(\frac{t}{2}\right)^2 < \frac{mn}{3}
$$
\n
$$
\Rightarrow e_f(1) < \left(\frac{t}{2}\right)^2 \le \left|\frac{mn}{3}\right|
$$
\ni.e. $e_f(1) < \left|\frac{mn}{3}\right|$.
\nCase-III $\frac{t}{2} < \min\{m, n\} = n$ (say) and $\frac{t}{2} \ge \frac{m}{3}$.
\n
$$
\Rightarrow 3t \ge 2m
$$

$$
\Rightarrow m+n+2\geq 2m
$$

$$
\Rightarrow m \leq n+2.
$$

Now we see that $t \leq \frac{m+n+2}{2}$ $\frac{n+2}{3} \leq \frac{2n+4}{3}$ $\frac{n+4}{3} \leq n$, as $n \geq 4$

$$
\Rightarrow t \le m, n
$$

\n
$$
\Rightarrow t^2 \le mn
$$

\n
$$
\Rightarrow \frac{t^2}{4} \le \frac{mn}{4} < \frac{mn}{3}
$$

\n
$$
\Rightarrow e_f(1) \le \frac{t^2}{4} < \left[\frac{mn}{3}\right].
$$

Thus, in any case $e_f(1) < \left| \frac{mn}{3} \right|$ $\left[\frac{mn}{3}\right]$, which gives $\max\{e_f(0), e_f(2)\}\geq \left[\frac{mn}{3}\right]$ $\frac{m}{3}$ + 2. ∴ max $\{e_f(0), e_f(2)\} - e_f(1) \ge 2$

∴ f can not be a geometric mean 3 – equitable labeling for $K_{m,n}$. Hence, $K_{m,n}$ is not a geometric mean 3 –equitable graph, when $m, n \geq 4$.

REFERENCES

[1] I Cahit, Cordial graphs: A weaker version of graceful and harmonious graph, *Ars Combin*., 23, (1987), pp. 201 − 207.

[2] I Cahit, On cordial and 3 −equitable labeling of graphs, *Until. Math.*,37, (1990), pp. 189 − 198.

[3] K. Chitra Lakshmi and K. Nagarajan, Geometric mean cordial labeling of graphs, *Int. J. of Math. And Soft Computing,* 7(1), (2017),pp. 75 − 87.

[4] J. A. Gallian, A Dynamic Survey of Graph Labeling, *The Electronics Journal of Combinatorics*, 17#DS6, (2016).

[5] F. Harary, Graph theory, *Addition Wesley, Massachusetts*, 1972.

[6] R. Ponraj, M. Sivakumar and M. Sundaram, Mean cordial labeling of graphs, *Open J. Discrete math.*, 2, (2012), pp. 145 − 148.