

Research article

Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Path Union and Cycle of Graphs with Mean Labeling

Makadia H.M^{*}

Lukhdhirji Engineering College, MORBI-363642. E-mail: <u>makadia.hardik21@gmail.com</u>

ABSTRACT

In this paper we investigate mean labeling for path union of $K_{2,m}$, P_n , $P_n \times P_m$, C_n . Also we prove that the mean labeling for cycle of P_n , C_n , $P_n \times P_m$. Path unions of any mean graph are mean graph for that were call Step grid graphics mean graph.

KEY WORDS: Cycle, Complete bipartite graph, Grid graph, Step grid graph, Path union of graphs, Cycle of graphs and mean labeling.

*Corresponding author

H. M. Makadia

Lukhdhirji Engineering College,

Morbi, Gujrat -363642.

E-mail: makadia.hardik21@gmail.com

1: INTRODUCTION

We begin with a simple, undirected and finite graph G=(V,E) with |V|=p vertices and |E|=q edges. For all terminology, notations and basic definitions we follows Harary¹. First of all we give brief summary of definitions which are used in this paper.

Definition-1.1: If the vertices of the graph are assigned values subject to certain conditions then it is known as *graph labeling*.

Definition-1.2: A function f is called *mean labeling* for a graph G = (V, E) if $f: V \rightarrow \{0, 1, \dots, q\}$ is injective and the induce function $f^*: E \rightarrow \{1, 2, \dots, q\}$ defined as $f^*(e) = \left\lfloor \frac{f(u)+f(v)}{2} \right\rfloor$ is objective for every edge $e=(u,v)\in E$. Agraph G is called *mean graph* if it admits a mean labeling.

Definition -1.3: For a cycle C_n , each vertices of C_n is replace by connected graphs $G_1, G_2, ..., G_n$ is known as *cycle of graphs* and we shall denote it by $C(G_1, G_2, ..., G_n)$. If we replace each vertices by a graph G i.e. $G_1 = G, G_2 = G, ..., G_n = G$, such cycle of a graph G, we shall denote it by $C(n \cdot G)$.

Above definition 1.3 was introduced by Kaneria et. al.⁴.

Definition -1.4:Let*G* beagraphand $G_1, G_2, ..., G_n, n \ge 2$ bencopiesofgraph*G*. Then the graph obtained by adding an edge from G_i to G_{i+1} (for i = 1, 2, ..., n - 1) is called *pathunion* of *G*, we shall denote it by $P(G_1, G_2, ..., G_n)$. If we replace each graph $G_1, G_2, ..., G_n$ by a graph *G* i.e. $G_1 = G = G_2 = ... = G_n$, such path union of *n* copies of *G*, we shall denote it by $P(n \cdot G)$.

For detail survey of various graph labelings and bibliographic references we refer to Gallian [2]. Labelled graph have many diversified applications. In ³ Somasunderam and Ponraj have introduced the notion of mean labeling of graphs in 2003. They proved that P_n , C_n , $P_n \times P_m$, $K_{2,m}$ are mean graphs and K_n , $K_{1,n}$ are mean graphs iff $n \le 3$. They also prove that Wn is not a mean graph for n > 3.

In ⁵ Kaneria et.al. prove that the step grid graph Stn where $n \ge 3$, is a mean graph with size n.

Definition 1.5 Take P_n , P_n , P_{n-1} , ..., P_2 pathson n, n, n-1, n-2, ..., 3, 2 vertices and arrange them vertically.

A graph obtained by joining horizontal vertices of given successive paths is known as a step grid graph of size *n*, where $n \ge 3$. It is denoted by St_n .

Obviously $|V(St_n) = (n^2 + 3n - 2)$ and $|E(St_n)| = n^2 + n - 2$.

A Step grid graph *St*₈ with its mean labeling shown in *figure*-1.

Figure-1 Mean labeling of St₈.

They also proved that path union of step grid graph, cycle of step grid graph $C(r \cdot St_n)$ where $r \equiv 0 \pmod{2}$ are mean graphs.

A mean graph G will always have vertices with labels q, q-1 and 0, where $q \ge 2$.

Also two vertices with labels q and q - 1 are adjacent in the mean graph G.

In this paper we have proved that path union of any mean graph sis also a mean graph and cycle of C_n , P_n and $P_n \times P_m$ are mean graphs as well.

2: MAIN RESULTS

Theorem-2.1: Path union of *t* copies of a mean graph *G* is also a meangraph.

Proof: Let G be a mean graph with injective mean labeling function $f: V(G) \rightarrow V(G)$

 $\{0, 1, \ldots, q\}$ and bijective induced function $f^*: E(G) \longrightarrow \{1, 2, \ldots, q\}$.

Let $V(G) = \{v_i / i = 1, 2, ..., p\}$. Since $\exists v_i, v_j \in V(G)$ such that $f(v_i) = q$ and $f(v_j) = 0$, for some $i, j \in \{1, 2, ..., p\}$, without loss of generality we may assume that $f(v_1) = q$ and $f(v_p) = 0$.

Let *H* be the path union of *t* copies of the mean graph *G*. Let $u_{i,j}(1 \le j \le p)$ be vertices of $i^{th} \operatorname{copy} G^{(i)}$ of pathunion*H*, $\forall i=1,2,...,t$. Nowjoin $u_{i,1}$ and $u_{i+1,p}$ by an edgewhen *i* is odd, join $u_{i,p}$ and $u_{i+1,1}$ by an edgewhen *i* is even, $\forall i=1,2,...,t-1$ to form the graph *H*. We define the labeling function g: $V(H) \longrightarrow \{0,1,...,Q\}$, where $Q=t \cdot q+t-1$ as follows.

$$g(u_{1,j})=f(v_j)+(Q-q), \qquad \forall j=1,2,...,p;$$

$$g(u_{i,j}) = g(u_{i-1,j}) - (q+1), \qquad \forall j=1,2,...,p, \forall i=2,3,...,t.$$

Above labeling pattern give rise a mean labeling to the given H and so H is a mean graph.

Corollary-2.2:Path union of *t* copies of $K_{2,m}$ is a meangraph.

Proof: Let *H* be a path union of *t* copies of $K_{2,m}$. We see that the number of vertices in *H* is |V(H)| = P = t(m+2) and the number of edges in *H* is E(H) = Q = 2tm + t - 1. Let $u_{i,1}, u_{i,2}, v_{i,j} (1 \le j \le m)$ bevertices of $i^{th} \operatorname{copy} K_{2,m}^{(i)}$ of $H, \forall i=1,2,...,t$. Now join

 $u_{i,1}$ and $u_{i+1,2}$ by an edge when *i* is odd, join $u_{i,2}$ and $u_{i+1,1}$ by an edge when *i* is even,

 \forall *i*=1,2,...,*t*-1toformpathunionof*t*copiesof*K*_{2,m}.

We know that the labeling function $f: V(K_{2,m}^{(1)}) \rightarrow \{0, 1, \ldots, q = 2m\}$ defined by

$$f(u_{1,1}) = q_{1}f(u_{1,2}) = 0$$
 and

$$f(u_{1,j}) = q - (2j - 1),$$
 $\forall j = 1, 2, ..., m$

is a mean labeling to the graph $K_{2,m}$. Now according to *Theorem*-2.1, we shall define

 $g: V(H) \longrightarrow \{0, 1, \ldots, Q\}$ as follows.

$$g(u_{1,j})=f(u_{1,j})+(Q-q), \qquad \forall j = 1,2;$$

$$g(v_{1,j})=f(v_{i,j})+(Q-q), \qquad \forall j=1,2,...,m;$$

$$g(u_{i,j}) = g(u_{i-1,j}) - (q+1), \qquad \forall j=1,2,...,m, \forall i=2,3,...,t;$$

$$g(v_{i,j}) = g(v_{i-1,j}) - (q+1), \qquad \forall j=1,2,...,m, \forall i=2,3,...,t.$$

Above labeling pattern give rise mean labeling to the path union of t copies of $K_{2,m}$

and so it is a mean graph.

Illustration -2.3: Pathunionof4copiesof $K_{2,3}$ and its mean labeling shown in *figure* -2.

Figure-2 Path union of 4 copies of K_{2,3} and its mean labeling.

Corollary-2.4: Path union of t copies of C_n is a meangraph.

Proof: Let *H* be path union of *t* copies of $C_n(n \in N)$. We see that number of vertices in *H* is |V(H)| = P = tn and number of edges in *H* is |E(H)| = Q = tn + t - 1. Let $u_{i,j}(1 \le j \le n)$ bevertices $ofi^{th} copy C^{(i)}$ of $H, \forall i = 1, 2, ..., t$. Now join $u_{i,1}$ and $u_{i+1,n}$ by an edge when *i* is odd, join $u_{i,n}$ and $u_{i+1,1}$ by an edge when *i* is even, $\forall i = 1, 2, ..., t - 1$ to form pathunion of *t* copies of C_n .

We know that the labeling function $f: V(C_n^{(1)}) \rightarrow \{0, 1, \dots, q = n\}$ defined by

$$f(u_{1,j}) = q+1-j, \qquad \text{when } j \le \left\lceil \frac{n+1}{2} \right\rceil$$
$$= q-j, \qquad \text{when } j > \left\lceil \frac{n+1}{2} \right\rceil, \forall j = 1, 2, ..., n$$

is a mean labeling to the graph C_n . Now according to *Theorem*-2.1, we shall define

 $g: V(H) \longrightarrow \{0, 1, \ldots, Q\}$, as follows.

$$g(u_{1,j}) = f(u_{1,j}) + (Q - n), \qquad \forall j = 1, 2, ..., n;$$

$$g(u_{i,j}) = g(u_{i-1,j}) - (n+1), \qquad \forall j = 1, 2, ..., n, \forall i = 2, 3, ..., t.$$

Above labeling pattern give rise mean labeling to the graph *H* and so *H* is a mean graph.

Figure-3 Path union of 5 copies of C7 and its mean labeling.

Corollary-2.6: Path union of *t* copies of P_n is a meangraph.

Proof: Let *H* be a path union of *t* copies of $P_n(n \in N)$. We see that the number of vertices in *H* is *tn* and the number of edges in *H* is *tn*-1. Let $u_{i,j}(1 \le j \le n)$ be vertices of $i^{th} \operatorname{copy} P^{(i)}$ of *H*, $\forall i=1,2,...,t$. Now join $u_{i,1}$ and $u_{i+1,n}$ by an edgewhen *i* is odd, join $u_{i,n}$ and $u_{i+1,1}$ by an edgewhen *i* is even, $\forall i=1,2,...,t-1$ to form path union of *t* copies of P_n .

We know that the labeling function $f: V(P_n^{(1)}) \rightarrow \{0, 1, ..., q=n-1\}$ defined by

$$f(u_{1,j}) = n - j,$$
 $\forall j = 1, 2, ..., n$

is a mean labeling to the graph P_n . Now according to *Theorem*-2.1, we shall define

 $g: V(H) \rightarrow \{0, 1, \ldots, Q\}$, where Q = tn - 1 as follows.

$$g(u_{1,j}) = f(u_{1,j}) + (Q - q), \qquad \forall j = 1, 2, ..., n;$$

$$g(u_{i,j}) = g(u_{i-1,j}) - (q+1), \qquad \forall j = 1, 2, ..., n, \forall i = 2, 3, ..., t.$$

Above labeling pattern give rise mean labeling to the graph *H*obtained by pathunion of *t* copies of P_n and so it is a mean graph.

Illustration -2.7: Pathunion of 7 copies of P_5 and its mean labeling shown in *figure* -4.

Corollary-2.8: Path union of t copies of $P_n \times P_m$ is a meangraph.

Proof: Let *H* be a path union of *t* copies of $P_n \times P_m(m, n \in N - \{1\})$. We see that the number of vertices in *H* is |V(H)| = P = tmn and the number of edges in *H* is |E(H)| = Q = t(q + 1) - 1, where q = 2mn - (m + n). Let $u_{i,j,k}(1 \le j \le n, 1 \le k \le m)$ be vertices of $i^{th} \operatorname{copy}(P_n \times P_m)^{(i)}$ of $H, \forall i = 1, 2, ..., t$. Now join $u_{i,n,m}$ with $u_{i+1,1,1}$ by an edge $\forall i = 1, 2, ..., t$ -1 to form the graph *H*.

We know that the labeling function $f: V((P_n \times P_m)^{(1)}) \longrightarrow \{0, 1, \ldots, q\}$, where q = 2mn - (m + n) defined by

$$f(u_{1,j,k}) = q - (2m-1)(j-1) - (k-1), \qquad \forall j = 1, 2, ..., n, \forall k = 1, 2, ..., m$$

is a mean labeling to the graph $(P_n \times P_m)^{(1)}$. Now define $g: V(H) \longrightarrow \{0, 1, \ldots, Q\}$ as follows.

$$g(u_{i,j,k}) = Q - (q+1)(i-1) - (2m-1)(j-1) - (k-1),$$

 $\forall i=1,2,...,t,\forall j=1,2,...,n,\forall k=1,2,...,m.$

Above labeling pattern give rise mean labeling to the graph *H* obtained by pathunion of *t* copies of grid graph $P_n \times P_m$ and so *H* is a mean graph.

Illustration – 2.9 :Path union of 5 copies of $P_3 \times P_3$ and its mean labeling shown in

Figure-5 Path union of 3 copies of P3 × P4 and its mean labeling.

Theorem – 2.10: $C(t \cdot P_n)$ is a mean graph, where $t \equiv 0 \pmod{2}$.

Proof: Let $G = C(t \cdot P_n)$, where $n \in N$. It is obvious that P = |V(G)| = tn = Q = |E(G)|. Let $u_{i,j}(1 \le j \le n, 1 \le i \le t)$ be vertices of graph *G*. We shall join $u_{i,1}$ with $u_{i+1,n}$. When $i + \frac{t}{2}$ is odd and $u_{i,n}$ with $u_{i+1,1}$. When $i + \frac{t}{2}$ is even to form the cycle graph $G = C(t \cdot P_n)$. Now define the labeling function : $V(G) \longrightarrow \{0, 1, \ldots, Q\}$ as follows.

$$g(u_{i,j}) = Q - n(i-1) - (j-1), \forall j = 1, 2, ..., n, \forall i = 1, 2, ..., \frac{t}{2};$$

$$g\left(u_{\frac{t}{2}+1,1}\right) = \frac{Q}{2};$$

$$g\left(u_{\frac{t}{2}+1,1}\right) = \frac{Q}{2} - j, \qquad \forall j = 1, 2, ..., n;$$

$$g(u_{i,j}) = Q - n(i-1) - j, \forall j = 1, 2, ..., n, \forall i = \frac{t}{2} + 2, \frac{t}{2} + 3, \cdots , t.$$

Above labeling pattern give rise mean labeling to the graph G obtained by taking cycle of path P_n and so G is a mean graph.

Illustration -2.11 : $C(6 \cdot P_5)$ and its mean labeling shown in *figure* -6.

Figure–6 Cycle graph C(6 \cdot P5) and its mean labeling.

Theorem -2.12: $C(t \cdot C_n)$ is a mean graph, where $n \in N$ and $t \equiv 0 \pmod{2}$. **Proof :** Let $G = C(t \cdot C_n)$, where $n \in N$. It is obvious that P = |V(G)| = tn and Q = |E(G)| = t(n + 1). Let $u_{i,j}(1 \le j \le n, 1 \le i \le t)$ be vertices of graph *G*. We shall join $u_{i,1}$ with $u_{i+1,n}$, when $i + \frac{i}{2}$ is odd and $u_{i,n}$ with $u_{i+1,1}$, when $i + \frac{i}{2}$ is even to form the cycle graph $G = C(t \cdot C_n)$.

Now define the labeling function : $V(G) \rightarrow \{0, 1, \dots, Q\}$ as follows.

$$g(u_{i,j}) = Q - (n+1)(i-1) - (j-1), \text{ when } j \le \left[\frac{n+1}{2}\right]$$

= Q-(n+1)(i-1)-j, when $j > \left[\frac{n+1}{2}\right],$
 $\forall j = 1, 2, ..., n, \forall i = 1, 2, ..., \frac{t}{2};$
 $g\left(u_{\frac{t}{2}+1,1}\right) = \frac{Q}{2};$
 $g\left(u_{\frac{t}{2}+1,1}\right) = \frac{Q}{2} - j, \quad \forall j = 1, 2, ..., \left[\frac{n}{2}\right];$

$$= \frac{Q}{2} - (j + 1), \forall j = \left[\frac{n+2}{2}\right], \left[\frac{n+4}{2}\right], ..., n;$$

$$g(u_{i,j}) = Q - (n + 1)(i - 1) - j, \text{when } j \le \left[\frac{n+1}{2}\right]$$

$$= Q - (n + 1)(i - 1) - (j + 1), \quad \text{when } j > \left[\frac{n+1}{2}\right]$$

$$\forall j = 1, 2, ..., n, \ \forall \ i = \frac{t}{2} + 2, \ \frac{t}{2} + 3, \cdots , t.$$

Above labeling pattern give rise mean labeling to the cycle graph G obtained by C_n and so G is a mean graph.

Illustration -2.13 : $C(4 \cdot C_7)$ and its mean labeling shown in *figure* -7.

Figure-7 Cycle graph $C(4 \cdot C7)$ and its mean labeling.

Theorem-2.14: $C(t \cdot P_n \times P_m)$ is a mean graph, where $m, n \in N$ and $t \equiv 0 \pmod{2}$.

Proof: Let $G = C(t \cdot P_n \times P_m)$, where $n, m \in N$. It is obvious that P = |V(G)| = tmn and Q = |E(G)| = t(2mn - (m + n) + 1). Let $u_{i,j,k}(1 \le j \le n, 1 \le k \le m, 1 \le i \le t)$ bevertices of graph G. We shall join $u_{i,1,1}$ with $u_{i+1,n,m}, \forall i=1,2,...,t-1$ to form the cycle graph $G = C(t \cdot P_n \times P_m)$.

Now define the labeling function: $V(G) \longrightarrow \{0, 1, ..., Q\}$, where Q = t(q+1) and q = 2mn - (m+n) as follows.

$$g(u_{i,j,k}) = Q - (q+1)(i-1) - (2m-1)(j-1) - (k-1),$$

$$\forall j = 1, 2, \dots, n, \forall k = 1, 2, \dots, m, \forall i = 1, 2, \dots, \frac{t}{2};$$

IJSRR, 7(1) Special Jan. – March, 2018

$$g\left(u_{\frac{t}{2}+1,1,1}\right) = \frac{Q}{2};$$

$$g\left(u_{\frac{t}{2}+1,j,k}\right) = Q - (q+1)(i-1) - (2m-1)(j-1) - k,$$

$$\forall j = 1, 2, \dots, n, \forall k = 1, 2, \dots, m,$$

$$g\left(u_{i,j}\right) = Q - (n+1)(i-1) - j,$$

$$\forall j = 1, 2, \dots, n, \forall k = 1, 2, \dots, m;$$

$$g(u_{i,j,k}) = Q - (q+1)(i-1) - (2m-1)(j-1) - k,$$

$$\forall j = 1, 2, \dots, n, \forall k = 1, 2, \dots, m, \forall i = \frac{t}{2} + 2, \frac{t}{2} + 3, \dots, t.$$

Above labeling pattern give rise mean labeling to the graph *G* obtained by taking cycle of grid graph $(P_n \times P_m)$ and so *G* is a mean graph.

Illustration -2.15 : $C(6 \cdot P_3 \times P_3)$ and its mean labeling shown in *figure* -8.

Figure–8 Cycle graph C(6 \cdot P3 \times P3) and its mean labeling.

3: CONCLUDING REMARKS

Here we have discussed mean labeling for path union of C_n , P_n , $K_{2,m}$ and $P_n \times P_m$. Also we proved that cycle of C_n , P_n , $P_n \times$ P_m are mean graphs. These results contribute somenewtopicstothefamiliesofmeangraphs. The labeling patternis demonstrated by means of illustrations.

Theorem-2.1 is a strong result of general nature, as it shows $P(t_1 \cdot P(t_2 \cdot K_{2,m}))$,

 $P(t_1 P(t_2 P_n)), P(t_1 P(t_2 C_n)), P(t_1 P(t_2 (P_n \times P_m))), P(t_1 C(t_2 P_n)), P(t_1 C(t_2 C_n))$

and $P(t_1 \cdot C(t_2 \cdot (P_n \times P_m)))$ are meangraphs. We raise open question toget mean labeling for the graphs $C(t_1 \cdot C(t_2 \cdot P_n)), C(t_1 \cdot C(t_2 \cdot C_n)), C(t_1 \cdot C(t_2 \cdot (P_n \times P_m))).$

REFERENCES

- 1. F. Harary, Graph theory Addition Wesley, Massachusetts, 1972.
- 2. J. A. Gallian, The Electronics Journal of Combinatorics, 19, #DS6(2013).
- S.SomasunderamandR.Ponraj,Meanlabelingsofgraphs,Natl.Acad,Sci.Let.,26 (2003) pp. 210 -213.
- V.J.Kaneria, H.M.Makadiaand M.M.Jariya, Gracefullabelingforcycleofgraphs, *Int. J. of Math. Res.*, vol–2014;6(2): 173 – 178.
- 5. V. J. Kaneria, Meera Meghpara and H. M. Makadia, Mean labeling for Step grid graph, *Advances and Applications in Mathematical Sciences*, 2015;14(4): 111 119.