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ABSTRACT   
In this paper, an investigation has been made to study the effects of Soret and Dufour on steady, 

laminar boundary layer flow over a horizontal uniformly heated semi-infinite plate due to indirect 
natural convection. The governing nonlinear partial differential equations are transformed into a 
system of coupled ordinary differential equations by using suitable substitutions and are solved 
numerically by using MATLAB’s built-in-solver bvp4c. The results of the velocity, temperature and 
concentration fields are presented graphically and discussed for Soret and Dufour number. Also, 
local skin friction, local heat and mass transfer coefficients at the surface are obtained and tabulated. 

  
KEYWORDS: horizontal plate, indirect natural convection, Soret, Dufour, bvp4c. 
 
 
 
 
 
 

 

 

 

 

 

*Corresponding Author:  

Konwar Hemanta* 
Department of Mathematics,  

Kohima Science College, Jotsoma, India. 

Email Id: hemanta.konwar@gmail.com  



770 
Konwar Hemanta, IJSRR 2018, 7(2), 769-780 

IJSRR, 7(2) April – June, 2018                                                                                                         Page 770 

INTRODUCTION:  
The flow over a horizontal plate is a classical problem in fluid mechanics. Fluid motion driven by 

an indirectly induced pressure gradient normal to the direction of density potential is called indirect 

natural convection. The indirect natural convection from a heated horizontal plate in a fluid has been 

investigated experimentally in recent years due to its wide range of applications in applied sciences 

and engineering such as, cooling of electronic equipments, cooling of nuclear reactors, extraction 

geothermal energy, ground water flow, etc.  

When a low-viscous fluid past a hot vertical plate then convection takes place in the boundary 

layer originating at the lower edge of the plate and heat transferred from the plate to the fluid leads to 

decrease in density of the fluid near the surface of the plate due to rise in temperature and as a result 

gaining buoyancy force moves the fluid upward along the plate.  

But in case of heated semi-infinite horizontal plate facing upward the buoyancy force has no 

component along its length. In this case, heat is absorbed by the surrounding fluid progressively, thus 

inducing a horizontal temperature gradient  within the fluid, which in turn give rise to a favourable 

pressure gradient that leads to the formation of boundary layer flow at the surface of the plate due to 

indirect natural convection provided that a suitably defined Grashof number is large. Mathematically, 

above the surface of the horizontal plate, the temperature is everywhereT so that, as in the static 

field, there exist a pressure distribution having pressure gradient p y g    where origin is taken 

at one of the leading edge. In the boundary region adjacent to the plate dimensional temperature wT is 

larger thanT and so the density  of the fluid is lower than . Decreased in pressure gradient

p y g g     in the boundary layer region leads to a pressure drop in the x-direction. This 

reduced pressure gradient in x-direction is the origin of the indirect natural convection flow parallel 

to the plate and takes place at large Grashof number. 

It was first shown by Stewartson1 that such an indirect natural convection flow exists on the upper 

side of a horizontal plate when temperature of the plate is more than the surroundings. Rotem and 

Claassen2 studied numerically natural convection above unconfined horizontal surfaces. Goldstein et 

al.3 investigated experimentally heat and mass transfer adjacent to horizontal plate. Al-arabi and El-

Riedy4 have discussed natural convection heat transform an isothermal horizontal plates of different 

shapes. Sparrow and Carlson5 discussed local and average natural convection Nusselt number for a 

uniformly heated horizontal plate. Noshadi and Schneider6 investigated natural convection flow far 

from a horizontal plate. Schlichting and Gersten7 have presented a similarity solution for horizontal 

semi-infinite plates for constant wall temperature.  
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The study of heat and mass transfer in boundary layer flow has great importance in fluid 

dynamics. It has been experienced that when heat and mass transfer occurs simultaneously the 

driving potential is of more complicated in nature, as energy flux can be generated not only by 

temperature gradient but also by concentration gradient as well.  

Generally, it is known that heat and mass fluxes are generated from temperature and concentration 

gradient, respectively. Mass flux due to the temperature gradient is known as Soret effect or thermo-

diffusion and heat flux that occurs in a chemically reactive system due to the concentration gradient 

is called Dufour effect or diffusion-thermo. Usually these effects are important under a large 

temperature and concentration gradient where more than one chemical species are present in fluid 

and each species has its own diffusion velocity. Soret and Dufour effects are important due to a wide 

range of applications such as the solidification of binary alloys, separation of mixtures of gases with 

light molecular elements, isotope separation, pollution control, etc. Eckert and Drake8 first showed 

that though Soret and Dufour effects are smaller order of magnitude, but cannot be neglected. 

Dursunkaya and Worek9 studied boundary layer flow considering Soret and Dufour effects from 

vertical surface. Kafoussias and Williams10 investigated the effects of Soret and Dufour on mixed 

convection and mass transfer laminar boundary layer flow over a vertical flat plate. Joly et al.11 

analyzed the thermal and solutal effects on natural convection in a vertical enclosure. Postelnicu12 

studied heat and mass transfer by natural convection from vertical surfaces in porous media 

considering Soret and Dufour effects. 

Abreu et al.13 studied Soret and Dufour effects in boundary layer flows.  

In this paper an investigation is made by considering Soret and Dufour effects due to indirect 

natural convection flow as their effects are important in transport phenomena. 

 

MATHEMATICAL FORMULATION: 
Consider a steady, laminar, boundary layer flow of a thermally and electrically conducting, 

chemically reacting, incompressible viscous Newtonian fluid over a uniformly heated semi-infinite 

horizontal flat plate facing upward with a single leading edge. The plate is maintained at uniform 

surface temperature wT  while the quiescent fluid is maintained at a lower temperature ( ).wT T   The 

physical model and the coordinate system are shown in the Fig.1. We take origin at one end of the 

plate, x-axis is along the surface of the plate and y-axis is normal to it. 
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Fig.1: Formation of a pressure gradient p x  in the boundary layer due to indirect natural 
convection. 

 
Using Boussinesq approximation the continuity, momentum equations in x and y-directions, 

energy equation and concentration distribution equation in the boundary layer region in dimensional 

form are  

0,u v
x y
 

 
 

                       (1) 

 
2

2
1u u p uu v

x y x y



      
                                  

(2)  

   0 ,T C
p g T T g C Cy     
    


                   (3)  

2 2

2 2
T

s p

DkT T T Cu vx y c cy y
     

   
                                (4)  

and 
2 2

2 2
T

m

C C CD Dk Tu vx y Ty y
     
   

                    (5)
 

with the boundary conditions 

0, 0, ,w wu v T T C C       at 0y                     (6) 

and 

0, , ,u T T C C p p       at y                                       (7)      

Introducing the following non-dimensional quantities,  
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into dimensional boundary layer Eqs.(1)-(7) we get non-dimensional boundary layer equations as 

follows:  
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along with the non-dimensional boundary conditions 
* *0, 0, ,1 1u v T C     at 0y                            (14)   

and 
* *0, , , 00 0u T C p     at y                     (15)   

Note that the powers in Eq. (8) are so chosen that the continuity equation, a viscous term in the x-

momentum equation as well as the pressure and buoyancy terms in the y-momentum equation remain 

the same after the transformation in the limit .LGr    

METHOD OF SOLUTION: 
We now introduce non-dimensional stream function  ,x y such that 

yu   and xv                                        (16)  
where functional forms for , ,p *T and *C in terms of similarity variable are defined by 

3
5 ( ),x f 
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5 ,y x




2
5 ( ) ,p x h  * ( )T   and * ( ).C                               (17) 

The non-dimensional equation of continuity Eq.(9) is identically satisfied when u  and v  are 

expressed in terms of ( , )x y  as defined by the equation Eq.(16). 

 Substituting similarity transformations given by Eq.(17) into the boundary layer Eqs.(10)-(15) we 

get the following ordinary differential equations: 
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and 
3

0
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along with the new boundary conditions 

0, 0, 1, 1f f        when 0                             (22) 
and  

0, 0, 0, 0f h       when                     (23) 
where prime denotes the differentiation with respect to .  The nonlinear coupled ordinary 

differential equations Eqs.(18)-(21) are solved numerically by using MATLAB’s built in solver 

bvp4c by taking into consideration of boundary conditions Eqs.(22)-(23). 

 

RESULTS AND DISCUSSIONS:  
In order to get a physical insight into the problem, a representative set of numerical results are 

shown graphically for Soret and Dufour numbers. 

 
Fig.2: Horizontal velocity profile for different values of ST 
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Fig.3: Temperature profile for different values of ST 

 
Fig.4: Concentration profile for different values of ST 

Figs.2, 3 and 4 depict the Soret effect on dimensionless horizontal velocity, temperature and 

concentration of the fluid respectively for values of N=1, Pr=0.72, Sc=0.57, Df=0.2. 

It is clear from Fig.2 that magnitude of horizontal velocity component increases asymptotically 

from minimum to maximum value within a thin boundary layer near the plate and then decreases 

exponentially towards the upper edge of the boundary layer as   increases. Moreover, increasing 

values of ST increases horizontal velocity component of the fluid. Fig.3 depicts that increase in the 

values of ST decreases the temperature of the fluid. It is because of the fact that larger the Soret 

number lower the thermal boundary layer thickness. It has been observed from the Fig.4 that 

concentration of species of the fluid is high at the surface of the plate and low towards the upper 

edge of the boundary layer as   increases. Moreover, concentration of species of the fluid increases 
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at any point in the boundary layer as the value of ST increases. It is true because increase in Soret 

number raises temperature gradient which causes high mass flux and as a result concentration of 

species of the fluid increases in the boundary layer. 

 

 

 

Fig.5: Horizontal velocity profile for different values of Df  

  

Fig.6: Temperature profile for different values of Df 
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Fig.7: Concentration profile for different values of Df 

 

Figs.5, 6 and 7 show the Dufour effect on dimensionless horizontal velocity, temperature and 

concentration of species the fluid respectively for values of N=1, Pr=0.72, Sc=0.57, ST=0.6. 

 

Table:1 

Pr N ST Df Sc f         

0.3 1 0.8 0.2 0.5 1.9709 0.2999 0.3711 
0.7 1 0.8 0.2 0.5 1.7236 0.4266 0.3011 

1.3 1 0.8 0.2 0.5 1.6043 0.5573 0.2414 

0.7 1 1.6 0.2 0.5 1.8488 0.4494 0.2078 
0.7 1 2 0.2 0.5 1.9113 0.4612 0.1559 

0.7 1 0.6 0.0 0.5 1.6645 0.4327 0.3157 

0.7 1 0.6 0.5 0.5 1.7358 0.3964    0.3340 
0.7 1 0.6 2 0.5 1.9569 0.2171    0.4030 
0.7 0 0.6 0.2 0.5 1.0182 0.3501    0.2678 
0.7 0.5 0.6 0.2 0.5 1.3800 0.3914    0.3000 

0.7 1.5 0.6 0.2 0.5 1.9612 0.4430    0.3401 
0.7 1 0.6 0.2 0.2 1.9719 0.4619 0.2416 

0.7 1 0.6 0.2 0.6 1.6779 0.4169 0.3285 

0.7 1 0.6 0.2 1.2 1.5258 0.3872 0.4232 
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It has been noticed from the Fig.5 that horizontal velocity component of the fluid increases with 

the increase in the values of Df. Fig.6 reveals that temperature of the fluid increases with increase in 

the values of Df. It is true because large Dufour number causes high mass diffusivity and high 

concentration gradient which results in increase heat flux and hence temperature of the fluid rises. 

Fig.7 reveals that due to increase in the values of Df  concentration of species of the fluid decreases 

in the boundary layer. 

The effect of the local skin friction, the local Nusselt number and the Sherwood number which are 

proportional to ,f     and    which have practical importance are tabulated below in Table 1. The 

Table is self-explanatory. 

CONCLUSION: 
From the above discussions it is clear that the Soret and Dufour effects have a great rule to play in 

laminar flow, heat and mass transfer on a uniformly heated semi-infinite horizontal plate due to 

indirect natural convection. From the investigation it can be concluded that  

 The effect of increase in the Soret number is to increase horizontal velocity component and 

concentration of species but to decrease temperature of the fluid in the boundary layer. 

 The effect of increase in the Dufour number is to increase horizontal velocity component and 

temperature but to decrease concentration of species of the fluid in the boundary layer. 

 

SYMBOLS USED: 
Dimensional quantities 
u- Fluid velocity components along x-axis 
v- Fluid velocity components along y-axis,  
p- Static pressure 
p∞-Working pressure 
T- Temperature of the fluid in the boundary layer 
C-Concentration of species in the boundary layer 

wC -Surface concentration, 
C - Species concentration away from the plate  
x - Dimensional length measured along the plate 
y - Dimensional length measured normal to the plate 

Greek Letters 

 - Thermal diffusivity 
 -Kinematic viscosity 

,T C -Volumetric coefficients of expansion of temperature and concentration of species 
 -Fluid density 
  - Dimensional Stream function 
  - Similarity variable 
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 - Density of the quiescent fluid 

Non-dimensional quantities 

u - Fluid velocity components along x-axis 
v  - Fluid velocity components along y-axis,  
g - Acceleration due to gravity, 
l= Characteristic length 
p - Static pressure 

*T -Temperature of the fluid in the boundary layer 
D- Mass diffusivity, 

*C -Concentration of species in the boundary layer 
wC - Surface concentration, 

C - Species concentration away from the plate 
Pr- Prandtl number 
N- Buoyancy parameter 
ST- Soret number 
Df - Dufour number 
Sc-Schmidt number 

L
Gr -Grashof number 
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