

Research article

Available online www.ijsrr.org

ISSN: 2279-0543

International Journal of Scientific Research and Reviews

Total Dominator Chromatic Number on Various Classes of Graphs

Dr.A.Vijayalekshmi^{*1} and S.Anusha²

 ¹Dept. of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamilnadu, India. Email:vijimath.a@gmail.com
 ² Dept. of Mathematics (S.S), S.T.Hindu College, Nagercoil-629002, Tamilnadu, India.
 Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Thirunelveli-627012 Tamil Nadu, India
 <u>http://doi.org/10.37794/IJSRR.2019.8404</u>

ABSTRACT

Let G be a graph with minimum degree at least one. A total dominator coloring of G is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The total dominator chromatic number of G is denoted by $\chi_{td}(G)$ and is defined by the minimum number of colors needed in a total dominator coloring of G. In this paper, we obtain total dominator chromatic number on various classes of graphs.

MATHEMATICS SUBJECT CLASSIFICATION: 05C15, 05C69

KEYWORDS : Total dominator chromatic number, banana graph ,book graph, stacked book graph, dutch wind mill graph, lollipop graph, gear graph, sunflower graph.

*Corresponding author

Dr.A.Vijayalekshmi

Associate professor, Dept. of Mathematics, S.T.Hindu College, Nagercoil-629002, India Tamilnadu, India. Email: <u>vijimath.a@gmail.com</u>

INTRODUCTION

All graphs considered in this paper are finite, undirected graphs and we follow standard definition of graph theory as found in¹. Let G = (V, E) be a graph of order n with minimum degree atleast one. The open neighborhood N(v) of a vertex $v \in V(G)$ consists of the set of all vertices adjacent to v. The closed neighborhood of v is N[v]= N (v)U {v}. An induced subgraph G[S], where $S \subseteq V$ of a graph G is a graph formed from a subset S of the vertices of G and all of the edges connecting pairs of vertices in S. A graph in which every pair of vertices is joined by exactly one edge is called complete graph. A complete bi partite graph is a graph whose vertices can be partitioned into two subsets V₁and V₂ such that no edge has both end points in the same subset, and each vertex of the first set is connected to every vertex of the second set and vice -verse. A star graph S_n is the complete bipartite graph K_{1,n-1} (A tree with one internal node and n-1 leaves).

The path and cycle of order n are denoted by P_n and C_n respectively. For any two graphs G and H, we define the cartesian product, denoted by $G \times H$, to be the graph with vertex set $V(G) \times V(H)$ and edges between two vertices (u_1, v_1) and (u_2, v_2) iff either $u_1=u_2$ and $v_1v_2 \in E(H)$ or $u_1u_2 \in E(G)$ and $v_1=v_2$.

A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. The total dominating set is minimal total dominating set if no proper subset of S is a total dominating set of G. The total domination number γ_t is the minimum cardinality taken over all minimal total dominating set of G. A γ_t -set is any minimal total dominating set with cardinality γ_t .

A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The minimum number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by χ (G). A total dominator coloring (td- coloring) of G is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The total dominator chromatic number is denoted by χ_{td} (G) and is defined by the minimum number of colors needed in a total dominator coloring of G. This concept was introduced by A.Vijiyalekshmi in². This notion is also referred as a smarandachely k - dominator coloring of G is a proper coloring of G such that every vertex in G properly dominates a color class. The smallest number is $k \ge 1$, a smarandachely k-dominator coloring of G is a proper coloring of G such that every vertex in G properly dominates a k color class. The smallest number of colors for which there exist a smarandachely k-dominator coloring of G is called the smarandachely k-dominator chromatic number of colors for which there exist a smarandachely k-dominator coloring of G is called the smarandachely k-dominator chromatic number of G, and is denoted by χ^{s}_{td} (G).

In a proper coloring C of G, a color class of C is a set consisting of all those vertices assigned the same color. Let C * be a minimal td-coloring of G. We say that a color class $c_i \in C$ * is called a non-dominated

color class (n-d color class) if it is not dominated by any vertex of G. These color classes are also called repeated color classes. A banana graph $B_{m,n}$ is a graph obtained by connecting one leaf of each m copies of an n-star graph with a single root vertex that is distinct from all the stars . The book graph B_m is defined as the graph Cartesian product $P_2 \times K_{1,m-1}$. The stacked book graph $SB_{m,n}$ is the generalization of the book graph to stacked pages . The dutch windmill graph D_m^n is the graph obtained by taking n copies of the cycle graph C_n with a vertex in common .The lollipop graph $L_{m,n}$ is a graph consisting of a complete graph on m vertices and a path graph on n vertices connected with a bridge . The gear graph G_n is a wheel graph with a one single vertex added between each pair of adjacent vertices of the outer cycle. A sunflower graph Sf_n , where $n \ge 4$ is a graph obtained from n- cycle C_n by including a triangle on each outer edge so that one vertex of each outer triangle has degree 2.

The total dominator chromatic number of paths, cycles and ladder graphs were found in⁴. We have the following observations from⁴.

Theorem A⁴. Let G be p_n or C_n . Then

$$\chi_{td}(p_n) = \chi_{td}(C_n) = \begin{cases} 2\left\lfloor \frac{n}{4} \right\rfloor + 2 & \text{if } n \equiv 0 \pmod{4} \\ 2\left\lfloor \frac{n}{4} \right\rfloor + 3 & \text{if } n \equiv 1 \pmod{4} \\ 2\left\lfloor \frac{n+2}{4} \right\rfloor + 2 & \text{otherwise} \end{cases}$$

In this paper, we obtain the least value for total dominator chromatic number on various classes of graphs.

Theorem 1 For the banana graph $B_{m,n} \chi_{td}(B_{m,n})=2m+1$

Proof: Let B $_{m,n}$ be the banana graph .The vertex set of the graph $V(B_{m,n}) =$

{u} U $\{v_{ij} / 1 \le i \le n \text{ and } 1 \le j \le m\}$. T hat is ,B _{m,n} consist of one vertex has degree m and m vertices of degree 2 and m vertices of degree n-1 and m(n-2) vertices of degree 1. We assign 2m distinct colors to degree 2 and n-1 respectively and the color say 2m+1 to the vertices of degree 1 and \square Thus $\chi_{td}(B_{m,n}) = 2m+1$.

 $\chi_{td}(B_{4,5}) = 9$

Theorem 2 For the book graph B_m , $\chi_{td}(B_m)=4$

Proof :Let $P_2 \times K_{1,m}$ be the book graph with vertex set { $v_1, v_2, v_3, \dots, v_{2n+1}, v_{2n+2}$ }, where (v_1, v_2) and (v_i, v_j) i=3,5,7-----,2n+1 and j=4,6,8,-----,2n+2 form the pages of B_m . We assign colors 1 and 2 to v_1 and v_2 repectively, assign the colors 3 and 4 to the set of vertices { $v_3, v_5, v_7, \dots, v_{2n+1}$ } and the set of vertices { $v_4, v_6, v_8, \dots, v_{2n+2}$ } respectively. Thus $\chi_{td}(B_m) = 4$.

Theorem 3 For any stacked book graph $SB_{m,n}$, $\chi_{td}(SB_{m,n})_{=}n+2$

Proof: Let $SB_{m,n} = P_n \times K_{1,m}$ be the stacked book graph and let $V(SB_{m,n}) =$

 $\{v_{ij} / 1 \le i \le n \text{ and } 1 \le j \le m\}$ such that B_i isomorphic to the vertex induced subgrarph v_{1i}, v_{2i}, v_{3i}, --------, v_{ni}. We assign n distinct colors 1,2,3,----,n to v₁₁, v₂₁, v₃₁, -----, v_{n1} and colors n+1 and n+2 to the set of vertices v_{ij}, $1 \le j \le m$ and i=1,3,5-----,n if n is odd and the set of vertices v_{ij}, $1 \le j \le m$ and i=2,4,6-----,n if n is even respectively. Thus $\chi_{td}(SB_{m,n})=n+2$.

 $\chi_{td}(SB_{3,4})=6$

Fig 3 Stacked Book Graph

Theorem 4 For the dutch wind mill graph D_m^n ,

$$\chi_{td}(D_m^n) = \begin{cases} n\left(2\left\lfloor\frac{m-3}{4}\right\rfloor + 3\right) - 2n + 4 & \text{if } m \equiv 0 \pmod{4} \\ n\left(2\left\lfloor\frac{m-3}{4}\right\rfloor + 2\right) - 2n + 4 & \text{if } m \equiv 3 \pmod{4} \\ n\left(2\left\lfloor\frac{m-1}{4}\right\rfloor + 2\right) - 2n + 4 & \text{otherwise} \end{cases}$$

Proof: Consider D_m^n formed by n copies of the cycle c_m with $V(D_m^n) = \{v_{ij}/_{j=1,2,3,----m}^{i=1,2,3,----n}\}$. For each i=1,2,3,---,n { $v_{i1},v_{i2},v_{i3},----,v_{im}$ } be the vertices of i- th copy of cycle C_m and $v_{11}=v_{21}=v_{31}=----==v_{n1}$ is a common vertex. We assign color 1 and 2 to a common vertex v_{11} and the set of vertices { v_{i2} , v_{im} }, i=1,2,3---,n and we assign n χ_{td} (C_{m-3}) distinct colors to remaining vertices { $v_{i3},v_{i4},v_{i5},-----$, v_{im-1} }, i=1,2,3,----,n. Totally we get n $\chi_{td}(C_{m-3}) + 2$ colors to need td-coloring. We using repeated colour, so χ_{td} (D_m^n)=n χ_{td} (C_{m-3}) +2-2(n-1).

Theorem 5 For lollipop graph $L_{m,n}$,

 $\chi_{td}(L_{m,n}) = \begin{cases} 2\left\lfloor \frac{n-2}{4} \right\rfloor + 2 & \text{if } n \equiv 2 \pmod{4} \\ 2\left\lfloor \frac{n-2}{4} \right\rfloor + 3 & \text{if } n \equiv 3 \pmod{4} \\ 2\left\lfloor \frac{n}{4} \right\rfloor + 2 & \text{otherwise} \end{cases}$

Proof: Let $L_{m,n}$ be the lolli pop graph and let $V(L_{m,n})=\{v_1,v_2,v_3,\dots,v_m,v_{m+1},v_{m+2},v_{m+3},\dots,v_{m+n}\}$ be the set of vertex set, where the set of vertices $\{v_1,v_2,v_3,\dots,v_m\}$ form K_m and the set of vertices $\{v_{m+1},v_{m+2},v_{m+3},\dots,v_{m+n}\}$ form P_n and (v_m,v_{m+1}) is a bridge of $L_{m,n}$. We assign colors 1 to the vertex set $\{v_m,v_{m+2}\}$ and the set of vertices $\{v_1,v_2,v_3,\dots,v_{m+1}\}$ receive m distinct colors say 2,3,\dots,m+1 respectively. Remaining (n-2) vertices $\{v_{m+3},v_{m+4},v_{m+5},\dots,v_{m+n}\}$ have $\chi_{td}(P_{n-2})$ colors for td – coloring.

 $\chi td(L_{6.8})=11$

Theorem 6 Any gear graph G_n , $\chi_{td}(G_n) = \chi_{td}(C_{2n})$

Proof: Let G_n be the gear graph with vertex set{ $v_1, v_2, v_3, \dots, v_n, v_{n+1}, v_{n+2}, v_{n+3} \dots v_{2n+1}$ }, where v_1 is the central vertex and v_i ($2 \le i \le 2n+1$) be the vertices on the cycle C_{2n} . For td –coloring , we need $\chi_{td}(C_{2n})$ colors for vertex set { $v_i/2 \le i \le 2n+1$ } and the central vertex receive any one of the above color. Thus $\chi_{td}(G_n) = \chi_{td}(C_{2n})$.

Theorem 7 Any sunflower graph Sf_n , $\chi_{td}(Sf_n) = 1 + \chi_{td}(C_n)$

Proof: Let Sf_n be the sun flower graph obtained taking a wheel with central vertex v_0 and the cycle C_n ($v_1v_2v_3$ ----- $v_n v_1$) and new vertices $w_1, w_2, w_3, ---, w_n$ where w_i is joined by the vertices v_i, v_{i+1} . We assign the color 1 to the set of vertices { $v_0, w_1, w_2, w_3, ---, w_n$ }. Remaining vertices lies on the circle C_n , for td –coloring, we need $\chi_{td}(C_n)$ colors. Thus $\chi_{td}(Sf_n) = 1 + \chi_{td}(C_n)$.

 $\chi_{td}(Sf_8)$

=7

REFERENCES:

- 1. Harrary.F, Graph Theory, Addition- wesley Reading, Mass, 1969.
- 2. Jinnah. M.I and Vijayalekshmi.A, Total dominator colorings in Graphs, Diss University of Kerala, 2010.
- 3. Vijayalekshmi.A, Total dominator colorings in Paths, International Journal of Mathematical Combinatorics, 2012;2:89-95.
- 4. Vijayalekshmi.A and Virgin Alangara sheeba.J ,Total dominator chromatic Number of paths, cycles and ladder graphs, 2018; 13(5):199 204.
- Kavitha.K & David.N.G, dominator coloring of some classes of graphs, International jornal of Mathematical archive-2012; 3(11): 3954-3957.

- 6. Mojdeh, E. Nazari. D.A & Askari. S Total dominator chromatic Number in graphs, International conference on combinatorics, gritography and computation, 1997; 14C: 352-362.
- 7. Suganya.P ,Mary.R Jeya Jothi, Dominator chromatic number of some graph classes International Journal of Computational and Applied Mathematics,2017;12:458-463.
- 8. Kalaivani.R ,Vijayalakshmi.D, A Note on Dominator chromatic number of some graphs classes International Conference Applied and ComputationaMathematics, Conf.Series 1139,2017.
- 9. Sylvain Gravier, Total domination number of grid graphs, Discrete Applied Mathematics, 2002;
 2: 119-128.
- 10. Terasa W.Haynes, Stephen T.Hedetniemi ,Peter J.Slater, Domination in Graphs, Marcel Dekker, New York, 1998.
- 11. Terasa W.Haynes, Stephen T.Hedetniemi ,Peter J.Slater, Domination in Graphs Advanced Topics, Marcel Dekker, New York, 1998.