International Journal of Scientific Research and Reviews

Total Dominator Chromatic Number on Various Classes of Graphs

Dr.A.Vijayalekshmi ${ }^{* 1}$ and S.Anusha ${ }^{2}$
${ }^{1}$ Dept. of Mathematics, S.T.Hindu College, Nagercoil-629002,
Tamilnadu, India. Email:vijimath.a@gmail.com
${ }^{2}$ Dept. of Mathematics (S.S), S.T.Hindu College, Nagercoil-629002, Tamilnadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Thirunelveli-627012
Tamil Nadu, India
http://doi.org/10.37794/IJSRR.2019.8404

Abstract

Let G be a graph with minimum degree at least one. A total dominator coloring of G is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The total dominator chromatic number of G is denoted by $\chi_{t d}(\mathrm{G})$ and is defined by the minimum number of colors needed in a total dominator coloring of G. In this paper, we obtain total dominator chromatic number on various classes of graphs.

MATHEMATICS SUBJECT CLASSIFICATION: 05C15, 05C69

KEYWORDS : Total dominator chromatic number, banana graph ,book graph, stacked book graph, dutch wind mill graph, lollipop graph, gear graph, sunflower graph.

*Corresponding author

Dr.A.Vijayalekshmi

Associate professor, Dept. of Mathematics,
S.T.Hindu College, Nagercoil-629002, India

Tamilnadu, India.
Email: vijimath.a@gmail.com

INTRODUCTION

All graphs considered in this paper are finite, undirected graphs and we follow standard definition of graph theory as found in 1. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph of order n with minimum degree atleast one . The open neighborhood $N(v)$ of a vertex $v \in V(G)$ consists of the set of all vertices adjacent to v. The closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. An induced subgraph $G[S]$, where $S \subseteq V$ of a graph G is a graph formed from a subset S of the vertices of G and all of the edges connecting pairs of vertices in S. A graph in which every pair of vertices is joined by exactly one edge is called complete graph. A complete bi partite graph is a graph whose vertices can be partitioned into two subsets V_{1} and V_{2} such that no edge has both end points in the same subset, and each vertex of the first set is connected to every vertex of the second set and vice -verse. A star graph S_{n} is the complete bipartite graph $K_{1, n-1}$ (A tree with one internal node and $n-1$ leaves).
The path and cycle of order n are denoted by P_{n} and C_{n} respectively. For any two graphs G and H , we define the cartesian product, denoted by $\mathrm{G} \times \mathrm{H}$, to be the graph with vertex set $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and edges between two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) iff either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$.

A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. The total dominating set is minimal total dominating set if no proper subset of S is a total dominating set of G. The total domination number γ_{t} is the minimum cardinality taken over all minimal total dominating set of G. A γ_{t}-set is any minimal total dominating set with cardinality γ_{t}.

A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The minimum number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(\mathrm{G})$. A total dominator coloring (td- coloring) of G is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The total dominator chromatic number is denoted by $\chi_{\mathrm{td}}(\mathrm{G})$ and is defined by the minimum number of colors needed in a total dominator coloring of G. This concept was introduced by A.Vijiyalekshmi in ${ }^{2}$. This notion is also referred as a smarandachely k - dominator coloring of $G(k \geq 1)$ and was introduced by A.Vijiyalekshmi in^{3}. For an integer $\mathrm{k} \geq 1$, a smarandachely k -dominator coloring of G is a proper coloring of G such that every vertex in G properly dominates a k color class. The smallest number of colors for which there exist a smarandachely k -dominator coloring of G is called the smarandachely kdominator chromatic number of G , and is denoted by $\chi^{\mathrm{s}}{ }_{\mathrm{td}}(\mathrm{G})$.
In a proper coloring C of G , a color class of C is a set consisting of all those vertices assigned the same color. Let C^{*} be a minimal td-coloring of G . We say that a color class $c_{i} \in \mathrm{C}^{*}$ is called a non-dominated
color class (n - d color class) if it is not dominated by any vertex of G . These color classes are also called repeated color classes. A banana graph $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ is a graph obtained by connecting one leaf of each m copies of an n-star graph with a single root vertex that is distinct from all the stars. The book graph B_{m} is defined as the graph Cartesian product $\mathrm{P}_{2} \times \mathrm{K}_{1, \mathrm{~m}-1}$. The stacked book graph $\mathrm{SB}_{\mathrm{m}, \mathrm{n}}$ is the generalization of the book graph to stacked pages. The dutch windmill graph D_{m}^{n} is the graph obtained by taking n copies of the cycle graph C_{n} with a vertex in common . The lollipop graph $\mathrm{L}_{\mathrm{m}, \mathrm{n}}$ is a graph consisting of a complete graph on m vertices and a path graph on n vertices connected with a bridge. The gear graph G_{n} is a wheel graph with a one single vertex added between each pair of adjacent vertices of the outer cycle. A sunflower graph $S f_{n}$, where $n \geq 4$ is a graph obtained from n - cycle C_{n} by including a triangle on each outer edge so that one vertex of each outer triangle has degree 2 .
The total dominator chromatic number of paths, cycles and ladder graphs were found in ${ }^{4}$. We have the following observations from ${ }^{4}$.

Theorem \mathbf{A}^{4}. Let G be p_{n} or C_{n}. Then

$$
\chi_{t d}\left(p_{n}\right)=\chi_{t d}\left(C_{n}\right)=\left\{\begin{array}{cc}
2\left\lfloor\frac{n}{4}\right\rfloor+2 & \text { if } n \equiv 0(\bmod 4) \\
2\left\lfloor\frac{n}{4}\right\rfloor+3 & \text { if } n \equiv 1(\bmod 4) \\
2\left\lfloor\frac{n+2}{4}\right\rfloor+2 & \text { otherwise }
\end{array}\right.
$$

In this paper, we obtain the least value for total dominator chromatic number on various classes of graphs.

Theorem 1 For the banana graph $\mathrm{B}_{\mathrm{m}, \mathrm{n}} \chi_{\mathrm{td}}\left(\mathrm{B}_{\mathrm{m}, \mathrm{n}}\right)=2 \mathrm{~m}+1$
Proof: Let $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ be the banana graph . The vertex set of the graph $\mathrm{V}\left(\mathrm{B}_{\mathrm{m}, \mathrm{n}}\right)=$
$\{\mathrm{u}\} \mathrm{U}\left\{v_{i j} / 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m\right\}$. That is , $\mathrm{B} \mathrm{m}_{\mathrm{m}, \mathrm{n}}$ consist of one vertex has degree m and m vertices of degree 2 and m vertices of degree $n-1$ and $m(n-2)$ vertices of degree 1 . We assign $2 m$ distinct colors to degree 2 and $n-1$ respectively and the color say $2 m+1$ to the vertices of degree 1 and \square Thus $\chi_{\mathrm{td}}\left(\mathrm{B}_{\mathrm{m}, \mathrm{n}}\right)=2 \mathrm{~m}+1$.

Fig 1 Banana Graph

$$
\chi_{\mathrm{td}}\left(\mathrm{~B}_{4,5}\right)=9
$$

Theorem 2 For the book graph $B_{m,} \chi_{\mathrm{td}}\left(\mathrm{B}_{\mathrm{m}}\right)=4$
Proof :Let $\mathrm{P}_{2} \times \mathrm{K}_{1, \mathrm{~m}}$ be the book graph with vertex $\operatorname{set}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3},-\cdots---, \mathrm{v}_{2 \mathrm{n}}, \mathrm{v}_{2 \mathrm{n}+1}, \mathrm{v}_{2 \mathrm{n}+2}\right\}$, where $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ and $\left(v_{i}, v_{j}\right) i=3,5,7--\cdots--, 2 n+1$ and $j=4,6,8,-\cdots---, 2 n+2$ form the pages of B_{m}. We assign colors 1 and 2 to v_{1} and v_{2} repectively, assign the colors 3 and 4 to the set of vertices $\left\{\mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}, \cdots-\cdots----, \mathrm{v}_{2 \mathrm{n}+1}\right\}$ and the set of vertices $\left\{\mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8},----, \mathrm{v}_{2 \mathrm{n}+2}\right\}$ respectively. Thus $\chi_{\mathrm{td}}\left(\mathrm{B}_{\mathrm{m}}\right)=4$.

Fig 2 Book Graph

Theorem 3 For any stacked book graph $\mathrm{SB}_{\mathrm{m}, \mathrm{n}}, \chi_{\mathrm{td}}\left(\mathrm{SB}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{n}+2$
Proof: Let $\mathrm{SB}_{\mathrm{m}, \mathrm{n}}=\mathrm{P}_{\mathrm{n}} \times \mathrm{K}_{1, \mathrm{~m}}$ be the stacked book graph and let $\mathrm{V}\left(\mathrm{SB}_{\mathrm{m}, \mathrm{n}}\right)=$ $\left\{v_{i j} / 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq m\right\}$ such that B_{i} isomorphic to the vertex induced subgrarph $\mathrm{v}_{1 \mathrm{i}}, \mathrm{v}_{2 \mathrm{i}}, \mathrm{v}_{3 \mathrm{i}},----$ $\cdots---, \mathrm{v}_{\mathrm{ni}}$. We assign n distinct colors $1,2,3,---, \mathrm{n}$ to $\mathrm{v}_{11}, \mathrm{v}_{21}, \mathrm{v}_{31},-\cdots--\cdots--, \mathrm{v}_{\mathrm{n} 1}$ and colors $\mathrm{n}+1$ and $\mathrm{n}+2$ to the set of vertices $v_{i \mathrm{ij}}, 1 \leq \mathrm{j} \leq \mathrm{m}$ and $\mathrm{i}=1,3,5-\cdots--, \mathrm{n}$ if n is odd and the set of vertices $v_{\mathrm{ij}}, 1 \leq \mathrm{j} \leq \mathrm{m}$ and $\mathrm{i}=2,4,6---$,-- n if n is even respectively.Thus $\chi_{\mathrm{td}}\left(\mathrm{SB}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{n}+2$.

Fig 3 Stacked Book Graph

Theorem 4 For the dutch wind mill graph D_{m}^{n},
$\chi_{t d}\left(D_{m}^{n}\right)=\left\{\begin{array}{cc}n\left(2\left\lfloor\frac{m-3}{4}\right\rfloor+3\right)-2 n+4 & \text { if } m \equiv 0(\bmod 4) \\ n\left(2\left\lfloor\frac{m-3}{4}\right\rfloor+2\right)-2 n+4 & \text { if } m \equiv 3(\bmod 4) \\ n\left(2\left\lfloor\frac{m-1}{4}\right\rfloor+2\right)-2 n+4 & \text { otherwise }\end{array}\right.$
Proof: Consider D_{m}^{n} formed by n copies of the cycle c_{m} with $\mathrm{V}\left(D_{m}^{n}\right)=\left\{\mathrm{v}_{\mathrm{ij}} /{ }_{j=1,2,3,--\cdots--m}^{i=1,2,3,-\cdots--n}\right\}$. For each $\mathrm{i}=1,2,3,---, \mathrm{n}\left\{\mathrm{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}, \mathrm{v}_{\mathrm{i} 3},-\cdots--\cdots---\mathrm{v}_{\mathrm{im}}\right\}$ be the vertices of $\mathrm{i}-\mathrm{th}$ copy of cycle C_{m} and $\mathrm{v}_{11}=\mathrm{v}_{21}=\mathrm{v}_{31}=--------=$ $\mathrm{v}_{\mathrm{n} 1}$ is a common vertex. We assign color 1 and 2 to a common vertex v_{11} and the set of vertices $\left\{\mathrm{v}_{\mathrm{i} 2}\right.$, $\left.\mathrm{v}_{\mathrm{im}}\right\}$, $\mathrm{i}=1,2,3----, \mathrm{n}$ and we assign $\mathrm{n} \chi_{\mathrm{td}}\left(\mathrm{C}_{\mathrm{m}-3}\right)$ distinct colors to remaining vertices $\left\{\mathrm{v}_{\mathrm{i} 3}, \mathrm{v}_{\mathrm{i} 4}, \mathrm{v}_{\mathrm{i} 5},-\cdots------\right.$, $\left.\mathrm{v}_{\mathrm{im}-1}\right\}, \mathrm{i}=1,2,3,-\cdots--, \mathrm{n}$. Totally we get $\mathrm{n} \chi_{\mathrm{td}}\left(\mathrm{C}_{\mathrm{m}-3}\right)+2$ colors to need td-coloring. We using repeated colour, so $\chi_{\mathrm{td}}\left(D_{m}^{n}\right)_{=} \chi_{\mathrm{td}}\left(\mathrm{C}_{\mathrm{m}-3}\right)+2-2(\mathrm{n}-1)$.

Thus $\chi_{t d}\left(D_{m}^{n}\right)=\left\{\begin{array}{cc}n\left(2\left\lfloor\frac{m-3}{4}\right\rfloor+3\right)-2 n+4 & \text { if } m \equiv 0(\bmod 4) \\ n\left(2\left\lfloor\frac{m-3}{4}\right\rfloor+2\right)-2 n+4 & \text { if } m \equiv 3(\bmod 4) \\ n\left(2\left\lfloor\frac{m-1}{4}\right\rfloor+2\right)-2 n+4 & \text { otherwise }\end{array}\right.$

Fig 4 Dutch Wind mill Graph

$$
\chi_{\mathrm{td}}\left(D_{11}^{3}\right)=16
$$

Theorem 5 For lollipop graph $\mathrm{L}_{\mathrm{m}, \mathrm{n}}$,

$$
\chi_{\mathrm{td}}\left(\mathrm{~L}_{\mathrm{m}, \mathrm{n}}\right)=\left\{\begin{array}{cc}
2\left\lfloor\frac{n-2}{4}\right\rfloor+2 & \text { if } n \equiv 2(\bmod 4) \\
2\left\lfloor\frac{n-2}{4}\right\rfloor+3 & \text { if } n \equiv 3(\bmod 4) \\
2\left\lfloor\frac{n}{4}\right\rfloor+2 & \text { otherwise }
\end{array}\right.
$$

Proof: Let $L_{m, n}$ be the lolli pop graph and let $V\left(L_{m, n}\right)=\left\{v_{1}, v_{2}, v_{3},-\cdots-----v_{m}, v_{m+1}, v_{m+2}, v_{m+3},-\cdots-----v_{m+n}\right.$ $\}$ be the set of vertex set, where the set of vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3},-\cdots-----\mathrm{v}_{\mathrm{m}}\right\}$ form K_{m} and the set of vertices $\left\{\mathrm{v}_{\mathrm{m}+1}, \mathrm{v}_{\mathrm{m}+2}, \mathrm{v}_{\mathrm{m}+3},-\cdots------\mathrm{v}_{\mathrm{m}+\mathrm{n}}\right\}$ form P_{n} and $\left(\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}+1}\right)$ is a bridge of $\mathrm{L}_{\mathrm{m}, \mathrm{n}}$. We assign colors 1 to the vertex set $\left\{\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}+2}\right\}$ and the set of vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3},-\cdots------\mathrm{v}_{\mathrm{m}-1}, \mathrm{v}_{\mathrm{m}+1\}}\right.$ receive m distinct colors say $2,3,----$ $m+1$ respectively. Remaining ($n-2$) vertices $\left\{v_{m+3}, v_{m+4}, v_{m+5},-\cdots------v_{m+n}\right\}$ have $\chi_{t d}\left(P_{n-2}\right)$ colors for $t d-$ coloring.

Thus $\chi_{\mathrm{td}}\left(\mathrm{L}_{\mathrm{m}, \mathrm{n}}\right)=\left\{\begin{array}{cc}2\left\lfloor\frac{n-2}{4}\right\rfloor+2 & \text { if } n \equiv 2(\bmod 4) \\ 2\left\lfloor\frac{n-2}{4}\right\rfloor+3 \\ 2\left\lfloor\frac{n}{4}\right\rfloor+2 & \text { if } n \equiv 3(\bmod 4) \\ \text { otherwise }\end{array}\right.$

Fig 5 Lallipop Graph

$$
\chi \operatorname{td}\left(\mathrm{L}_{6,8}\right)=11
$$

Theorem 6 Any gear graph $\mathrm{G}_{\mathrm{n}}, \chi_{\mathrm{td}}\left(\mathrm{G}_{\mathrm{n}}\right)=\chi_{\mathrm{td}}\left(\mathrm{C}_{2 \mathrm{n}}\right)$
Proof:: Let G_{n} be the gear graph with vertex $\operatorname{set}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3},-\cdots-----\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}+1}, \mathrm{v}_{\mathrm{n}+2}, \mathrm{v}_{\mathrm{n}+3} \cdots--\cdots------\right.$
$\left.\mathrm{v}_{2 \mathrm{n}+1}\right\}$, where v_{1} is the central vertex and $\mathrm{v}_{\mathrm{i}}(2 \leq \mathrm{i} \leq 2 \mathrm{n}+1)$ be the vertices on the cycle $\mathrm{C}_{2 \mathrm{n}}$. For td -coloring , we need $\chi_{\mathrm{td}}\left(\mathrm{C}_{2 \mathrm{n}}\right)$ colors for vertex set $\left\{\mathrm{v}_{\mathrm{i}} / 2 \leq \mathrm{i} \leq 2 \mathrm{n}+1\right\}$ and the central vertex receive any one of the above color. Thus $\chi_{\mathrm{td}}\left(\mathrm{G}_{\mathrm{n}}\right)=\chi_{\mathrm{td}}\left(\mathrm{C}_{2 \mathrm{n}}\right)$.

Fig 6.Gear Graph

Theorem 7 Any sunflower graph $\mathrm{Sf}_{\mathrm{n}}, \chi_{\mathrm{td}}\left(\mathrm{Sf}_{\mathrm{n}}\right)=1+\chi_{\mathrm{td}}\left(\mathrm{C}_{\mathrm{n}}\right)$
Proof: Let Sf_{n} be the sun flower graph obtained taking a wheel with central vertex v_{0} and the cycle C_{n} $\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \cdots-\cdots-\cdots--\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right)$ and new vertices $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3},-\cdots-\mathrm{w}_{\mathrm{n}}$ where w_{i} is joined by the vertices $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}$. We assign the color 1 to the set of vertices $\left\{\mathrm{v}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3},----\mathrm{w}_{\mathrm{n}}\right\}$.Remaining vertices lies on the circle C_{n}, for td -coloring, we need $\chi_{\mathrm{td}}\left(\mathrm{C}_{\mathrm{n}}\right)$ colors. Thus $\chi_{\mathrm{td}}\left(\mathrm{Sf}_{\mathrm{n}}\right)=1+\chi_{\mathrm{td}}\left(\mathrm{C}_{\mathrm{n}}\right)$.

Fig 7 Sun Flower Graph

$$
\chi_{\mathrm{td}}\left(\mathrm{Sf}_{8}\right) \quad=7
$$

REFERENCES:

1. Harrary.F, Graph Theory ,Addition- wesley Reading, Mass, 1969.
2. Jinnah. M.I and Vijayalekshmi.A, Total dominator colorings in Graphs, Diss University of Kerala, 2010.
3. Vijayalekshmi.A, Total dominator colorings in Paths, International Journal of Mathematical Combinatorics, 2012;2:89-95.
4. Vijayalekshmi.A and Virgin Alangara sheeba.J ,Total dominator chromatic Number of paths, cycles and ladder graphs, 2018; 13(5):199-204.
5. Kavitha.K \& David.N.G, dominator coloring of some classes of graphs, International jornal of Mathematical archive-2012; 3(11): 3954-3957.
6. Mojdeh,E.Nazari.D.A \& Askari.S Total dominator chromatic Number in graphs, International conference on combinatorics, gritography and computation, 1997; 14C: 352-362.
7. Suganya.P ,Mary.R Jeya Jothi, Dominator chromatic number of some graph classes International Journal of Computational and Applied Mathematics,2017;12:458-463.
8. Kalaivani.R ,Vijayalakshmi.D, A Note on Dominator chromatic number of some graphs classes International Conference Applied and ComputationaMathematics, Conf.Series 1139,2017.
9. Sylvain Gravier, Total domination number of grid graphs, Discrete Applied Mathematics, 2002; 2: 119-128.
10. Terasa W.Haynes,Stephen T.Hedetniemi ,Peter J.Slater, Domination in Graphs, Marcel Dekker,NewYork,1998.
11. Terasa W.Haynes,Stephen T.Hedetniemi ,Peter J.Slater, Domination in Graphs - Advanced Topics, Marcel Dekker,NewYork,1998.
