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ABSTRACT

The concept of § — C continuity and &, — C continuity already have been introduced earlier
on convex topological space (X ,7,C) where 7 is the topology and C is the convexity on the

same underlying set X . In this paper | have mainly investigated the inter relation between these two
types of continuity .
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1. INTRODUCTION

The development of “abstract convexity” has emanated from different sources in different
ways ; the first type of development basically banked on generalization of particular problems such
as separation of convex sets !, extremality ?* or continuous selection* . The second type of
development lay before the reader such axiomatizations , which in every case of design , express
particular point of view of convexity . With the view point of generalized topology which enters into
convexity via the closure or hull operator , Schmidt and Hammer, , introduced some axioms to
explain abstract convexity . The arising of convexity from algebraic operations and the related
property of domain finiteness receive attentions in Birch off and Frink , Schmidt, Hammer .

The axiomatizations as proposed by M.L.J. Van De Vel in his paper Theory of Convex
Structure > will be followed through out in this paper .

The author has discussed in “ Topology and Convexity on the same set © ” and introduced
the compatibility of the topology with a convexity on the same underlying set . At the very early
stage of this paper we have set aside this concept of compatibility and started just with a triplet
(X ,7,C) and call it convex topological space only to bring back “compatibility” in another way
subsequently . With this compatibility , Van De Vel has called the triplet (X,t,C) a topological
convex structure

In this paper , Art. 2 deals with some early definitions , results and in Art. 3 | have discussed

mainly inter relation between § — C continuous function and &, — C continuous function .

2. PREREQUISITES :
Definition 2.1 : Let X be a non empty set . A family ¢ of subsets of the set X is called a

convexity on X if
1. ¢, X €cC
2. C isstable for intersection, i.e. if D S C isnonempty,thennD € C
3. C is stable for nested unions , i.e. if D < C is non empty and totally ordered by set
inclusion, then UD eC .
The pair (X,C) is called a convex structure . The members of C are called convex sets
and their complements are called concave sets .
Definition 2.2 : Let C be a convexity onset X . Let A € X . The convex hull of A is
denoted by co(A4) and defined by co(4) =n{C: A < C € C}.
Note 2.3¢ : Let (X,C) be aconvex structure and let Y be a subset of X . The family of sets
Cy ={CnY:CeC} isaconvexity on Y; called the relative convexity of Y.

Note 2.4 ¢ : The hull operator coy of asubspace (Y ,Cy) satisfy the following :
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VACY: coy(A) =co(A)NnY.
Definition 2.56: Let (X, C) be a convex structure and let T be a topology on X . Then 7 is
said to be compatible with the convex structure (X ,C) if all polytopes of C are closed in 7
where polytopes means convex hull of a finite set . Also the triplet (X ,7,C) is then called
topological convex structure .
Note 2.6 ° : Let (X,7,C) bea topological convex structure . Then collection of all closed sets in
(X,t) aresubsetof C.
Definition 2.7 7 : Let (X,t) be a topological space and let C be a convexity on X . Then the
triplet (X ,7,C) is called a convex topological space ( CTS inshort) .
Theorem 2.87 : Let (X,t,C) be aconvex topological space . Let A be a subset of X . Consider
the set A, , where A, is defined as follows : A, ={x € X : co(U)N A = @,x € U € t} . Then the
collection 7, ={A°: A S X ,A = A,} isatopologyon X suchthat 7, € 7.
Definition 2.98 : Let (X, 7,6;)and (Y, 0,C,) be two convex topological spaces. A
function f: (X, t,6;) = (Y, 0,C,) issaidto be & — C continuous if for each x € X and
each open nbd. V of f(x), there exists an opennbd. U of x suchthat f(int(U.)) € int(V) .
Definition 2.10° : Let (X, 7,6, )and (Y, o,C,) be two convex topological spaces. A

function f: (X, t,6,) = (Y, 0,C,) issaidto be 4§, — Ccontinuous if for each x € X and

each open nbd. V of f(x) , there exists an open nbd. U of x such that f(int(co(U))) c

int(co (V)).

Definition 2.111% : A convex topological space (X ,t,C) is said to be an SC — R space if for
each x € X and each open nbd. V of x there exists an open nbd. U of x suchthat x e U ©
int(U,)cV.

Definition 2.1211 : A convex topological space (X ,7,C) is said to be a semi C- regular space
if for each x € X and each open nbd. V of x there exists an open nbd. U of x such that

erEint(co(U))EV.

3. COMPARISON BETWEEN é-¢€¢ CONTINUOUS AND 6,—C
CONTINUOUS FUNCTIONS :

Already | have discussed detail the concept of & — C continuity® and &, — € continuity® on
convex topological space . Now I will show that these two concepts are independent in general

which follow from the next two examples .

IJSRR, 8(2) April. —June., 2019 Page 3427



Bijoy Samanta, 1JSRR 2019, 8(2), 3425-3431

Example 3.1 : Let us consider the function f: (X, 7,C) =» (X, 0, C;) where X=
{a,b,c} , 7={0, X, {a} B} {a,b}} , c;={0.X} , o={0, x {a}} , &=
{0.X,{a,b}} and f is the identity mapping I, on X .

In the convex topological space (X, o, G, ) , we see that {a}, = {b}, = {c}. = X . This shows
that the function f is § — C continuous .

Again for the point a in (X, 7, ¢;) we consider the opennbd. V ={a} of f(a)=a in
(X,0,C). IntheCTS (X, 0,C;) , co{a}) ={a,b} and int(co({a})) ={a}.Also
inthe CTS (X, 7,6) ,({{a}) =co({a,b}) =co(X)=X . Thus there is no open nbd.
Uet of a such that f(int( co( U))) c (int( co( V))) . This shows that f is not &, —C
continuous .

Hence we conclude that § — C continuity # 6, — C continuity .

Example 3.2 : Let us consider the function f: (X, 7, C) - (X, 0,C;) where X=
{a.b,c} , t={0, x{bY} , c;={@0.x{b}} , o={0, x {a}, {b} {a,b}} ,
C,=1{0,X {b}} and f isthe identity mapping Iy on X .

In the CTS (X, t, C;) , non-empty open sets are {b}, X and int(co({b}) ={b} ,
(co(X))=X.Alsointhe CTS (X, o, C,) , non-empty opensetsare {a} , {b} ,{a, b},
X and int(co({a}) = int(co({a , b})) = int(co(X)) =X , int(co({b})) ={b}. So
we see that foreach x € X in (X, t, C;) andeachopennbd. V of f(x)in (X, o,C,),
there exists an open nbd. U of x suchthat f (int(co(U))) c int( co (V') . This shows that the
function f is &, — C continuous .

Again for the point a in (X, 7, ¢;) we consider the opennbd. V={a} of f(a)=a in
(X, 0,C).Nowinthe CTS (X, 0,C,), ({a},) =int({a,c}) ={a} . Also in the CTS
(X, 7,C) ,opennbd.of a is X and int(X,) =X . Thus there isnoopennbd. U € t of
a suchthat f(int(U,)) € int(V,) . This shows that f is not & — C continuous .

Hence we conclude that &, — C continuity # & — C continuity .

Now I will discuss under what conditions these two concepts coincide .

Theorem 3.3 : If a function f: (X, t,C;) - (Y, o, C,) be §—C continuous and Y is an
SC — R space where 7 is compatible with C, ,then f is &, —C continuous function .

Proof : Since 7 is compatible with C; , all closed sets of X arein C; . Thenforany PSS X ,
co(P)c Pc P, andso int( co(P)) Sint(P,).Let x€X and V be any open nbd. of f(x).
Since Y isan SC — R space, there exists an open set W suchthat f(x) e W € int(W,) SV .
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Again f is § — C continuous . So there exists an open nbd. U of x such that f( int( U*)) c
int(W,) . Now int(W) cVecco(V) = int(W,) c int( co( V)) . This shows that
f(int(co(U))) c f(int(U,)) € int(W,) € int( co(V)). Hence f is &, —C continuous
function .

Theorem 3.4 : Ifafunction f: (X, 7, C;) » (Y, o, C,) be 6, —C continuous and X isan
SC — R space where o is compatible with C, ,then f is § — C continuous function .

Proof : Given ¢ is compatible with ¢, . Then forany PSY , co(P)S PSP and so

int(co(P)) cint(P,) .Let x€X and V be any open nbd. of f(x) . Since f is &, —C
continuous , there exists an open nbd. U of x such that f(int(co(U))) cint(co(V)) . So

f(int(co(U))) c int(co (V)) cint(V,) . Again X isan SC—R space . So there exists an
open set W such that x e W Cint(W,) €U . Now int(W,) S U Cco(U) = int(W,) S
int( co(U)) . This shows that f( int(W,)) c f(int(co(U))) c int(V,) .Hence f is §—C
continuous function .

Theorem 3.5 : If a function f: (X, t, C;) = (Y, o, C,;) bed — C continuous where X is a
semi C- regular space and Y isan SC — R space ,then f is &, — C continuous function .
Proof : Let x € X and V be any open nbd. of f(x).Since Y isan SC — R space , there exists
an open set W of f(x) suchthat f(x)eWw cint(W,)<SV .So int(W,) Sco(V)C
int( co(V)) . Again f is & — C continuous . So there exists an open nbd. Z of x such that
f(int(Zz,)) € int(W,) . Also X isa semi C- regular space . Thus there exists an open set U such
that xeUCint(co(U))cint(Z,) . So f(int(co(U)))c f(int(2.)) S int(W,)
int( co (V')) . This shows that f is &, —C continuous function .

Theorem 3.6 : Ifa function f: (X, t, C;) = (Y, o, C,;) be &, — C continuous where X is
an SC — R spaceand Y isa semiC- regular space, then f is § — C continuous function .
Proof : Let x € X and V be any open nbd. of f(x).Now int(V,) isanopennbd. of f(x) and
Y is an semi C- regular space .So there exists an open set W of f(x) suchthat f(x)eWw c
int(co (W)) € int(V,). Again f is 8, — C continuous . So there exists an open nbd. Z of x
such that f ( int (co(Z ))) cint(co(W)).Also X isa SC—R space . Thus there exists an
open  set U such  that xeUcint(U)<cint(co(Z)) . So
f(int(u.) < f(int (co(2))) € int(co (W)) S int(V.) . This shows that f is §-C

continuous function .
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Theorem 3.7 : If a function f: (X, t,C ) = (Y, o,C,) be continuous and X is an
SC — R space, then f is & — C continuous function .

Proof : Let x € X and V be any open nbd. of f(x).Now int(V,) isan open nbd. of f(x).
Since f is continuous , there exists an open nbd. W of x suchthat f(W) < int(V,). Again X is
an SC — R space . So there exists an open set U € t such that € U € int(U,) €W . Thus
f(int(U,)) € fF(W) € int(V,) . This shows that f is & — C continuous function .

Theorem 3.8 : Ifafunction f: (X, t, C;) = (Y, o, C,) be continuousand X isa semi C-
regular space , then f is §, — C continuous function .

Proof: Let x € X and V be any open nbd. of f(x).Now int( co(V)) isan opennbd. of f(x)
. Since f is continuous , there exists an open nbd. W of x suchthat f(W) < int(co(V)).
Again X is a semi C- regular space . So there exists an open set U €t such that x e U ©
int( co( U)) CW .Thus f ( int( co( U))) c f(w)c int( co( V)) . This shows that f is§, — C
continuous function .

Theorem 3.91° : If a function f: (X, 7, C;) » (Y, o, C,) be §— C continuous and Y is
an SC — R space, then f is continuous function .

Theorem 3.10'! : If a function f: (X, t, &) - (Y, o, C,) be &, — C continuous and Y
isa semi C- regular space , then f is continuous function .

Theorem 3.11 : Let f: (X, t,C;) =» (Y, o, C,) bea function where X , Y are SC—R
spaces. Then f is continuous iff itis § — C continuous .

Proof : Follows from the Theorems 3.7 and 3.9..

Theorem 3.12 : Let f: (X, 1, C) = (Y, o, C,) beafunction where X , Y are semi C-
regular spaces. Then f is continuous iff itis &, — C continuous .

Proof : Follows from the Theorems 3.8 and 3.10 .

Theorem 3.13 : Let f: (X, 1, C) = (Y, o, C,) be a function where X , Y are SC—R
and semi C- regular spaces. Then f is § — C continuous iff itis §, — C continuous .

Proof: Follows from the Theorems 3.11 and 3.12.
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