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ABSTRACT

This paper demonstrates a transient solution for the system size in a M/M/4 queue where the
service rates of the servers are not similar with the possibility of catastrophes at the system also with
the impatient customer behavior. For the customer in the system the time dependent probabilities are
derived.
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1. INTRODUCTION

In the study of queue networks one typically tries to obtain the equilibrium distribution of the
network, although in many applications the study of the transient state is fundamental. The transient
response is necessarily tied to any event that affects the equilibrium of the system.

Multi-server queuing systems arrive in congestion problems of telephone exchange and
computer networks. A complete description of situations with such queuing analysis of computer
systems can be found in Lavenberg **. In many real multi-server queuing situations, the service with
heterogeneity is a common feature. The heterogeneous servers to the waiting lines are analyzed by
Gumbel.H 3. The role of quality and service performance is crucial aspects in customer perceptions
and firms must dedicate special attention to them with designing and implementing their operations.
For these reasons, the queues with heterogeneity have received considerable attention in the
literature. Transient solution of a two processor heterogeneous system has been discussed by
Dharamaraja. S ®. A control model for a machine center with two heterogeneous system has been
introduced by Liu and Kumar . A treaties on the Theory of Bessel functions where discussed by
Watson. G. N & Whitt. W ° has analyzed the Untold Horrors of the Waiting Room: What the
Equilibrium Distribution Will Never Tell about the Queue Length Process. A research on Measures
for Time Dependent Queueing Problem with Service in Batches of Variables Size was done by Garg.
p.c'

In recent times, queuing model with catastrophes has been investigated by Boucherie and
Boxma !, Jain and Sigman ** and Dudin and Nishimura 2. Transient solution of a single server
queue with catastrophes are discussed by Kumar,B.K and Arivudainambi.D*. An analysis made on
the queuing network model with catastrophes and its product from solution by Chao.X . The
catastrophes may come either from outside of the system or from another service station of the
system. Height™ first presented the single server queue with balking. Al-seedy and kotb*® considered
the transient solution of a single-server system with balking concept. Al-seedy and et.al*’, studied
about transient solution of the ¢ server queue with balking and reneging.

A combined analysis of queues with heterogeneous servers subject to catastrophes to find
transient solution of an M/M/2 model by Kumar.B.K, Pavai.M and Vankatakrihnan *. Transient
solution of a Markovian queuing model with heterogeneous servers and catastrophes has been
discussed by Dharmaraja and Rakesh Kumar . Julia Rose Mary and Maria Remona®® studied the
Transient Solution to the M/M/4 heterogeneous servers queueing system subject to catastrophes.
From the output of this study, the queueing system is organized as follows: To describe the queueing
model of four server heterogeneous system with balking also with catastrophes and to derive the

time-dependent state probabilities for the system size.
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2. SYSTEM MODEL

By examining on M/M/4 queuing system with heterogeneous servers and assume that the
servers times follow exponential distributions with the service rates as ,, u,, 15,and u, for four
different servers where , > u, > p, > p,. Consider the customer arrival process in Poisson with

rate A and system also has one waiting line. FCFS queuing discipline is followed and each customer
requires exactly one server for the service. When the server becomes free, the customer who is first
in the waiting line will join the queue.

Other than arrival and service processes, there also occur catastrophes at the service facilities

with rate » in a Poisson manner. In the system, whenever a catastrophe occurs it destroys all the

customers in the system immediately, and also the server get inactivated. Then the service is started

when a new arrival occurs.

Let {X(t)t e R" | be the number of customers in time t. Let P, (t)=P(X(t)=n),n=456,...
denotes the probability of n customers in the system at time t. Also let P,(t)=P(X(t)=0) be the
probability that the system is empty at time t, P,(t)=P(X(t)=1) be the probability that there is one
customer in the system, P,(t)=P(X(t)=2) be the probability that there are two customers in the
system, and P,(t)=P(X (t) = 3) be the probability that there are three customers in the system.

In this system, we deal with the M/M/4 queueing system with heterogeneous servers subject
to catastrophe as well as balking. We consider the customers arrive at the system one by one
according to a Poisson process with rate A. On arrival a customer either decides to join the queue
with probability

p = probfa unit joinsthequeud or balk with probability 1-p, where 0< p<1 if n=c(l)

and p=1if n=0()c—1 where ¢ =4.

3. THE TRANSIENT PROBABILITIES FOR THE QUEUEING SYSTEM
From the above assumptions the transient-state probabilities of heterogeneous servers
P,(t),P,(t),P,(t),P,(t)and P (t), n=456... satisfy the following system of differential difference

equations with balking and catastrophes:

) _ 7,0+ R6)+ 1 Po(0) CE)
0 220+ () ©2)
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=g R0 A0 o+ 1+ 2P0 33)
Pl Gt R+ R,0) 1) 4
Pl) o+ om0+ 20,0)+ 4,0 65)
Pll) - (o + )R, 1)+ 2P, )+ B, 0). =56, @9)

where p1 = g, + p, + py + .
Suppose at time t=0 there is no customer in the system, so that P,(t)=1. By using a

probability generating function technique the above system of equations are solved. By letting,

P(2,t) = Gy (t) + 3P, o (t)2™ 3.7)

n=0
where G, (t)=P,(t)+P,(t)+P,(t)+P,(t)+P,(t), with initial condition P(z,0)=1

Apply the standard generating function argument, the system of equations 3.1 to 3.6 then yields

an Y e G())+/l(z—1)P4(t)+[p/lz+%—(Pﬂ~+u+77)}[P(Z’t)‘Go(t)] (38)

Examine equation 3.8 as a first order linear differential equation in P(z,t) and solving, we get,

=e® +J' u))+ A(z —1)P,(u) - BG,(u)e®“du (3.9)
where B:[pﬂ,z +g—(pﬂ,+u+n)}

By utilizing the Bessel function generating function, if o = 2,/pAu and B = 2 , then
M

plz+ﬁ t o n
Sy )
where 1_(.) is the modified Bessel function of first kind of order .
Equating this in equation 3.9, then expanding P(z,t) as a series in z and comparing the co-efficient

of z" on either side, we get for n=123,...

P,.o(t)= "1, (at)e™ +7p" [ (1-Gy (W), (alt—u)le

TV LR 1) (I S I Y ST S
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~b(t-u)

=B [ [pal, s (alt=))p ™ + B, s (alt —u))-bl, (e(t-u)B,(ue du (3.10)

where b= pA + p+n and further, when n=0, we get

BG (1) = Bly(ot)e™ +nB" [ (1= Gy (u)l el —u)le ™ au

—b(t-u)

+A[ P (alt-u)- Alo(at-u)  du

—b(t-u)

- [ o (aft-u)p - bpl(alt-u)s e du (3.11)
where we have used 1_,()=1,().

Since P(z,t) does not contain terms with negative powers of z, the right hand side of 3.10

with n replaced with —n must be zero. Thus,

0=4"1(at)e™ +5B" I;(l—Go(u))ln(a(t—u))e‘b(t‘“)du

28 [Pyl lalt-u)p -1 el -u)p

~b(t-u)

‘ﬁnj;[PMn+1(“(t—U))ﬁ_l + upl n_1(06(t—U))—bln(oc(t—u))]GO(u)e du (3.12)

Utilizing equation 3.12 in 3.10, after some algebraic manipulation, we obtain for n=1,2,3,...
ot I (alt=Uu)) _piu
Pn+4(t): nﬁ J.OP4(U) ((t (——U) ))e bit )dU (313)

4. THE TRANSIENT PROBABILITY P,(t):

So far, the probabilities P,(t),P,(t),P,(t),P,(t)and P,(t) remain to be found. To find, we

consider the system of equations 3.1 to 2.4 subject to condition 3.11. Equations 3.1 to 3.4 can be
expressed in matrix from as
dp(t) _

e MP(t)+ne, + uP, (t)e, (4.1)

where P(t)=(P,(t),P,(t),P,(t), P, (1)), e, = (1,0,0,0)" and e, = (0,0,0,1)",

_A+7 1, 0 0
vol A ~Grmen) 1y + 11, 0
0 A —(A+ gy + 1, +7) Hy + 11y + 1
0 0 A —(A+ gty + y + 1y +17)
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In continuation, let P,"(s) denote the Laplace transform of P (t). Now, by taking Laplace

transforms, the result of 4.1 is obtained as
P(s)=(sl _M)-ﬂugjel . yP4*(s)e2} (42)

with P(0) = (1,0,0,0)" (4.3)

Hence, only P, (s) is to be found. We note that, if e = (1,1,11)",

G, (s)=e"P"(s)+P, (s) (4.4)
Taking Laplace transforms, after simplification, equation 2.11 yields,
« 1 1 «
G =—+——P [Q—\/QZ— 22 1] 4.5
o(s) S+2(S+77) 4(3) P (4.5)

where Q=S+ pAl+u+n

Utilizing 4.5 in 4.4 and solving for P, (s), we obtain

(107 ettt ) s+ ]

P, (s)= (4.6)
(S+17+p), ——lQ VO — J+e SI S+17)u62
Let (sl -M)™" = (mij*(s))‘lx4
It is easy to see that,
gl( )( ) 193(5)(,1114‘/12) _luli(s) ( )lul(:u1+1u2) _,Ul(,ul"',uz)(:u ,U4)
_M( ) f(S i(S) ( )93(8 ,Ul"‘,uz) ( )(:u1+:u2)(:u ,U4)
’5(s) ~ £ (s)gs(s) 93( N (s)gu(s)-Am) (A — £ (), (s)Nme — as)
_M)—l _ _}“3 }“Zf( ) (}‘:ul S) ( )) f( ) ( ) nulﬂ“QZ( )
D(m)
4.7

where 91(5)=5+/1+/~11+77i gz(s):5+/1+ﬂ1+ﬂ2+77; 93(5):5+1+ﬂ1+ﬂ2+ﬂ3+77i

f(s): S+A+n; i(S): gz( )gs( ) (/J u4) , j(S)= 91(5)92(5)_/1(% +,u2)'
and

ID(M) = 5"+ s*(4(4 +1) + 3uty + 241, + p15) + ST [(A + 1, +1)23(A +1)+ 208, + paa)+ (11, + 1M1ty + 1)
+3u, (st + 1)+ ]+ SUA+n (A + )32 +1)+ 208, + 1)+ (11, + 115 ) a1, + 1)+ 2]

+ A2 (24 )Bay +30)+ (7 + 11 N2ty + 2ty + )+ T [+ (s, + Nty + iyt
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enln? + (0 + B N+ 200, + 13)+ 11, (21, +80)+ 11 (s + 115+ 117 (ty + 11, ) 1+
V(A0 [2man + ugn + 22 + 07 + 22m |+ (A +0)|20%n + 3pam + gy aam + 3Am |

ln + i+, + 1)+ i’ |
The characteristics roots of the matrix M are given by
ID(M) =0 (4.8)

By defining,
:%{4[(’1 + 1+ 1234+ 1)+ 24, + p15)+ (1t + 1)ty + p15) + 31t + 1) + g
—[4(A+1)+3u, +2u, + us]z}
0= g 20 ) 34020, 160 208 ) 2y ) sy N 1)

+ 34 (g +1)+ e J(A + )2+ )B(A + 1)+ 208, + p1y)+ (11, + 11 N, +1)+ 1]

+ AL+ ()8 +37)+ (7 + 4, 2ty + 20, + p1)+ T payn |+ (pty + 0, Nt pay + 105
ol + 0+ 40N + 200, + 1)+ 120, +80) + 1yt + g | 1 )|+

64\(4 + 1 P [2um + g + 22+ + 22 |+ (A + 1) 2020 + 3 + pu ey + 3 |

(g Ko + g, + 11y + 1)+ e’

n=2+- andH——cos{

} the characteristic roots of 4.8 are

24-at
s, =n cos[@ +(i - 2)2?”} _(4(+n)+ 3? + 240y + ”3), i=12,34. (4.9)

It is examined that m, (s) are all rational algebraic functions of s. Then, the inverse transform
m,(t) of m,"(s) is obtained by partial fraction decompositions. Since the characteristics roots

s;,1=1234 of M are all real and distinct, m(t) is the inverse transform of m,(s), which are

given by,
_ : gl(sk )[gz(sk )gs(sk )_ ),(u —Hy )]_ ﬂ*gs(sk )(,ul + ,uz) g
mu(t) é Hi4:1,i¢k (Sk - Si)
: gs :u‘l + ,uz)e
i ,ul[gz Sy gs( ) ﬂ,(‘u —Hy )] e Zl H|4—1|¢k
k=1 H—1|¢k(sk _Si)
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LN

M-

?«‘
Il

mzz(t) = Z f (Sk )[QZ(Sk )gs(sk)_ ),(y - lLt4)]eskt (t) = i (ﬂ,

,ul(,ul + ,uz)(,u _,u4)eskt L - f Sk gs( ) eskt
Hi‘lzl,#k (Sk —Si ) é Hl—ll#k
= 200,(5)83(5) = Al = )] o i 9 (s X )gl(sk) At)
H;i#k (Sk - Si) k1 H —Lizk (Sk Si)

)gl(sk ))(ﬂ - ﬂ4) 5t

My | e
4 4
Hi:l,i¢k (Sk - Si) k=1 Hi:l,i¢k (Sk =5 )

—f (Skll)gs(Sk )(,U1 + ﬂz) st

Hi:l,i¢k (Sk h Si) k2 Hi:l,i¢k (sk S,)
m — : ﬂ“z f (sk ) eskt
m24(t) = i f (Sk )(:u‘l + 4, )(/J ,u4) * (t) ; H4 , si)
k=1 Hi‘lzl,#k(sk B Si)

L 2gy(s)
m,, (t)= Nl
31( ) é H;,w (sk B si)

m _ i (Sk )[gl(sk )gz(sk ) - ﬂv(,ul T H )] — :ul/lgz(sk ) ot
: (t) é Hi‘lzl,#k (Sk - Si)

From the matrix 4.7, we achieve,

e'(sl —M) (s+n)e, =(s+n Zmn

and e"(sl —M) (s +7)ue, = s+nuZmJ4
=

Replacing 4.10 and 4.11 in 4.6, we get

tfeaat

(s+n+ﬂ)—2[Q—\/Q2—a ]+/~l (s+n) imj4*(s)

i1

P4* (S) -

Utilizing equation 4.7 in 4.2, we have

By 6)= sy oSN~ A0+ 1))+ Py el o+ o~ )|
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e

! i=Lizk (Sk N Si)

(4.10)

(4.11)

(4.12)
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(4.13)

(4.14)

(4.15)

(4.16)

From matrix theory, the characteristic roots s, ,1=1,2,3,4 of M provided are all real and distinct.

Explore s, =0, it can be obtained by partial fraction decompositions as

(s+n)°

T (5= )s-50)

(S+ )2 4 ﬁ“[gz ( ) 3«(#—#4)](5“7)2 —n. (s
o sk Y
T SN o S
s s ea) ™
(s+77)2m (=S ~X(s+n)y (s
A TV
(S+77)m12*(s) i ﬂl[gz(sk)gs(sk) (u ,u4)](5+77):n12*(s)

T
o

Hi4:1,i¢k (Sk Si )(S =Sy )

m * 1+Z g1 [g sk) ( )_A(u_u‘l)]—},gs(sk)(,ul+,uz)}(5+77)2 :1+n11*(s)
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e Atlern)
20T s sgs-s) "

_ : ,ulgs(sk )(,ul + ,uz)(s +77) _ n13*(s)

k=0 H;#k (Sk =S, )(S - Sk)
i f(5)95 (s Niew + 11, (s + 1) =n, ()

-

s+77 k=0 H?—ll#k(sk _Si)(s_sk)

S+ + 4 [f(sk ) /l:ul]g?:( )(S+77): wn(s
( n - ; H—1|¢k(5k _Si)(s_sk) ik ( )
s+n)m,, (s & Al — f(s,)0,(s )](5+77) —n. (s

( 77) 43 ( ) kz H?ll#k (Sk )( ) 43 ( )

(5)= i t(py + 1, N — g s +1) _ 0, (s)

k=0 H;i#k (Sk =S )(S - Sk)

)
2 ; Hiil,i#k (Sk =S )(S_Sk) i ( )

= & [ = F(50)9u(s ) — 1 Ms +7) (s
kz:(; Hi4:1,i¢k (Sk —S )(S — S ) * ( )

oo mm(s) =1+ 3 (1606000020 + 11 )1- 29,5 Mo 1) _y -

pary H;i#k (s, —s Ns—s,)

where n;(s)'s , denote the summation terms in the above expressions.

Applying these in equation 4.12 and after some algebraic manipulations, we will get
4

i[Q—\/Qz —a? ](U—Znﬁ*(s)}

1+—[Q QP - ],Jz n,, (s

P, (s)=

which implies P, (s)=-2 [Q \/927]( j[u—[g Vo7 o |, (5) } (4.17)

4

where d,’(s)=>n;'(s), i=14.

=1

The previous equation can be expressed as,
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S a

P4*(s)=i(—1)”[3)n+l Q[Q‘— “QZ“"ZJM—dl()[Q QZ_“J O R

Taking inversion on equations 2.26-2.29 and doing some algebraic operations, we get

Py(t)=
P,(t)=
P,(t)=
P,(t)=

My, )+ 7] mys(u)du + [ rmy, (£ = u)P, (u)du (4.19)
My (0)+77 [ M ()du + [ gemy, (£ - u)P, (u)du (4.20)
My, (£)+77 [y (u)du + [ e me, (t—u)P, (u)du (4.21)
My (0)+ 7] My (udu + [ zrm,, (t-u)P, (u)du (4.22)

Therefore, equations 3.13 and 4.18-4.22 completely determine all system size probabilities.

CONCLUSION

In the transient-state analysis, a four heterogeneous server queueing system subject to

catastrophes is constructed then the time-dependent probabilities for the number of customers in the

system is obtained.
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