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ABSTRACT 

The method of refinement of crystal structure from one dimensional powder diffraction 
pattern was first proposed by H. M. Rietveld in the year 1967. Rietveld proposed that it is possible to 
extract much more information from the digitized (step scanned) powder diffraction pattern using the 
computer codes available by fitting the entire diffraction data. The powder diffraction pattern was 
then considered to be inferior compared to the single crystal diffraction data which was used for the 
calculation of the crystal structure. The integrated intensity was the smallest unit of measurement. 
But the individual raw intensity at a particular value of 2 for a constant wavelength diffraction set 
up carries much more information than that was previous thought. This is how the birth of Rietveld 
method took place and it rapidly gained momentum and acceptability to the materials scientists for 
crystal structure refinement where it is not always possible to crystallize new and exotic materials 
into good single crystals.   
Increasing complexity in the field of Materials Science, Crystallographic problems forces one to 
rethink the existing domains and earmarks the area of future developments in the Rietveld’s method. 
Improved modeling will lead to physically significant characterizations of anisotropic 
microstructure, as well as crystal structure details. Finally in the computational area more faster and 
efficient algorithms will certainly lead to the improvement of the method. Numerous computer 
software are available now-a-days some free others commercial to perform the Rietveld refinements. 
Thus it is fast becoming a global phenomenon started way back in 1969.     
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1. INTRODUCTION 
It was von Laue who first suggested in 1912 that x-rays could be used as a tool for 

investigating the structure of crystal. A crystal diffracts the x-ray beam in an analogous fashion as 

ordinary light is diffracted by a grating. Since then the powder diffraction (a powder is an assembly 

of very small single crystals) method has been used to study crystal structures. Although used as a 

mere qualitative tool, structures of crystals having higher symmetry had been solved primarily using 

trial-and-error methods. Till the mid-sixties the powder method was regarded to be inferior 

particularly for structure refinement. The logic is simple. The three dimensional intensity data 

obtained from a single crystal is compressed into a single dimension in the powder method, resulting 

in serious peak overlap. The problem is worse for complex low symmetry systems. The need was to 

unscramble the complex diffraction pattern. One obvious solution was to improve the resolution of 

the pattern. Synchrotron x-rays and time-of-flight neutron methods provided partial answer by 

reducing dramatically the peak overlap, and the problem of partially resolved peaks (a major source 

of ambiguity in obtaining integrated intensity information) was tackled by fitting the groups of 

overlapping intensities to Gaussian function by H. M. Rietveld and this is how the birth of Rietveld 

method took place at the Seventh Congress of the IUCr in Moscow in 1966 1,2. Since then there was 

no turning back. It is the Rietveld method which made it possible to determine the structure of high 

Tc superconductor YBa2Cu3O7-x 3 unambiguously where the single crystal structure determination 

failed. It is the power of the Rietveld method supplemented by the latest computational techniques 

which made it possible the refinement of 181 parameters ‘simultaneously’ with X-ray data on ZSM-5 

Zeolite 4. Many more examples can be found in the literature. 

2. WHAT IS RIETVELD’S METHOD? 
Basically in Rietveld method of analyzing the powder diffraction data, the crystal structure is 

refined by fitting the entire diffraction pattern to a calculated pattern. One obvious question may 

arise- ’why one should take recourse to powder diffraction at all when single crystals are available?’ 

The answer is simple as possible - ‘the general lack of adequate specimens for single crystal 

method’. Let us for example take the case of YBCO superconductor. The results obtained from the 

single crystal diffraction from all over the world were not in consensus. In the words of Rietveld 

himself - ‘even in those cases where it is possible to grow large single crystals, these may suffer from 

such effects such as extinction making a proper interpretation of the diffracted intensities unreliable’. 

It was during his assignment in mid-sixties at the Neutron Diffraction Group at the Netherlands 

Energy Research Foundation (then the Reactor Centrum Nederland) at Petten, work on Uranium 

compounds was conducted. The use of Neutron diffraction technique was essential for the accurate 
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determination of the position of the position of Oxygen atoms in the presence of Uranium atom. As 

good quality single crystals were not available powder diffraction technique was mandatory. The 

least squares method of adjusting structure parameters to minimize the differences between the 

observed and the calculated structure factors was already well established in crystallography. It was a 

small step from there. In the pre-computer period the idea of considering the individual intensities yi 

constituting a step-scanned diffraction peak as data was unrealistic. Single crystal diffractionists used 

the integrated intensities as the smallest data element for handling complex structures. Rietveld 

recognized that if the full power of the computers could be exploited the individual step intensities 

could be used instead of integrated intensities, with the assumption that the intensity at the ith step is 

the summation of the intensities from the peaks constituting the pattern along with the background. 

The calculated pattern is simulated using the structural parameters (structure factor, unit cell 

parameters etc.) along with a Gaussian spreading function. Rest is the usual non-linear least squares 

algorithm of minimizing the difference between the observed and the calculated pattern. 

A conference on ‘Diffraction Profile Analysis’ sponsored by the International Union of 

Crystallography was held at Cracow, Poland in August 1978. It was suggested that the phrase 

‘Rietveld Method’ should used in preference to other phrases such as ‘Profile Analysis’ or ‘Profile 

Fitting Structure Refinement’. It ended the era of confusion between Rietveld method (which deals 

with the entire diffraction pattern at one shot) and the analysis of the profiles of the individual 

diffraction lines (for example Warren 1969) 5. The principal goal of the Rietveld Method is to refine 

crystal structure, not profiles. Although recently many applications has been made to deal 

simultaneously with these two aspects and often both structural and microstructural information are 

available. A distinction at this point seems necessary between Profile Fitting/Pattern Decomposition 

and Rietveld Method. In the first method decomposition of the powder pattern into individual Bragg 

components is achieved without any structural model. The peak positions are unconstrained and are 

refined during the fitting cycle. In the Pawley method 6 better known as whole pattern decomposition 

lattice parameter constrains the peak position, whereas in Rietveld method a structural model is 

required, which constrains both the peak area and the peak position. While Profile Fitting /Whole 

pattern Powder Decomposition is suitable for microstructural analysis (crystallite size and 

microstrains), the Rietveld Method is most suitable for structure refinement. However, it is possible 

to incorporate the essence of Parrish (individual profile fitting based on convolution scheme) method 
7 into the Rietveld method by first determining the convolution product W*G (W is due to radiation 

source and G is due to the instrument geometry) with the help of a suitable standard and then further 

convoluting with it the symmetric sample dependent function (S). An analytic profile shape is 

required in each step. The whole thing (W*G)*S thus represents the model of the intensity spreading 
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function recorded in the reciprocal space. The structural model is then used to determine the actual 

intensity at each step. The whole thing thus becomes the calculated model which is finally matched 

with the experimental pattern in a least squares sense to calculate something sensible from it. 

The Rietveld method was first applied to Neutron diffraction patterns. Rietveld’s original 

code of structure refinement (written in ALGOL and later modified with FORTRAN IV) was based 

on Neutron diffraction at fixed wavelength. A wavelength of 2.6Å was chosen with a 

monochromator of Cu crystal with its <111> plane in reflecting position. Pyrolitic graphite was used 

to suppress the second order contributions. A continuous neutron source was used from a steady-

state reactor. The peak shape which is a convolution of various factors like the mosaicity of the 

monochromator crystal, slit geometry and finally the crystallinity of the sample was assumed to be 

Gaussian with small asymmetry at very low and high scattering angles. Later the Time-of-Flight 

technique was developed with the main application for structural studies at high pressure (ToF 

technique is a constant scattering angle technique where the detector is placed at a particular angle 

and the time-of-flight of the neutron beam is recorded) ToF technique was further developed using 

pulsed neutron sources produced by spallation and here the Rietveld method was confronted with the 

biggest challenge of modeling the profile shape. The peak shapes in case of this high-resolution ToF 

neutron data is highly asymmetric due to different response in the leading and trailing edge of the 

pulse. Although previous results of neutron diffraction based on Gaussian peak shapes resulted in 

good refinements, ToF technique using pulsed neutron sources required urgently better profile 

modeling based on convolution relation involving several Gaussian functions. With increasing 

demand for modeling anisotropic line broadening from the sample the situation becomes more 

complex. Rietveld in his 1969 paper proposed that the technique could be used for x-ray diffraction 

as well and it was in 1977 first RR technique was employed to X-ray data 8. The dream of a well 

behaved Gaussian peak shape was over. X-ray line shapes are neither pure Gaussian nor Lorentzian. 

Furthermore the axial divergence of the slit system makes the profiles asymmetric. The best way is 

thus to ascribe a Voigtian shape to X-ray diffraction line or more simply a Pseudo-Voigt function 

(Pearson VII is another choice). We will in the later sections deal with the mathematical formulations 

involved in Rietveld method and its recent developments.   

3. THE RIETVELD METHOD: CORE MATHEMATICS AND BASIC 

FORMULATION 
The core mathematics involved in a Rietveld Refinement program is basically a non-linear 

least squares method. The procedure leads to a set of normal equations involving derivatives of all of 
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the calculated intensities with respect to the adjustable parameters and are solved by the inversion of 

the normal matrix. 

In the Rietveld method the quantity which is minimized in the non –linear least squares 

procedure is the residual. It is defined as 

  ܵ = 	௜ݓ∑ ௜ݕ) −  ௖௜)2         ------- (1)ݕ

where yi is the observed or gross intensity ( actually measured in terms of  the number of x-ray 

photons detected) at any point i of the observed powder pattern and yci is the theoretical intensity . 

The weight, wi, is expressed as, wi=yi
-1 

The theoretical intensity yci has contribution from Bragg reflections, diffraction optics and 

instrumental factors. To simulate the theoretical diffraction pattern the Rietveld method requires two 

basic starting models: a structural model based on the approximate atomic positions in the lattice and 

a non-structural model, which takes care of the instrumental features and specimen features such as 

aberration due to absorption, specimen displacement, crystallite size and microstrain effects etc. The 

structural model helps to determine the total intensity of Bragg reflection along with their positions 

and the non structural model gives a description of individual profile in terms of an analytical of 

other differentiable functions (Psuedo-Voigt, Pearson VII, Gaussian, Lorentzian and modified 

Lorentzian functions are widely used).  

Using the structural and non-structural models the intensity at any arbitrary point i is 

calculated as: 

௖௜ݕ   = ܵ	∑ ௜ߠ௄|ଶΦ(2ܨ|௄ܮ − 	(௄ߠ2	 ௄ܲܣ	 + 	 ௕௜௄ݕ     -------- (2) 

where  S is the overall scale factor, 

 K represents miller Indices, hkl for a Bragg reflection, 

 LK contains Lorentz polarization and multiplicative factor, 

 K is a diffraction profile function which approximate the effect of both instrumental features 

and specimen features such as aberration due to absorption, specimen displacement, 

crystallite size and microstrain effects etc.,  

 PK is preferred orientation function, 

 FK is structure factor for Kth  Bragg reflection, 

  is background intensity at ith point. 

The simulated pattern is obtained by adding up the calculated intensities , at each step. The 

contribution at each step includes all the reflections in the corresponding diffraction pattern and also 

from different phases constituting the pattern. This calculated intensity is fitted to the observed 

pattern. 

biy

ciy
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The Bragg reflections contained in the summation expressed in eqn. 2 at each point of the 

powder pattern are determined from the possible reflections at 2i . Let us now examine in detail the 

terms involved in equation 2. 

3.1 Structure Factor 
The amplitude of X-ray scattered by a crystal is determined by the arrangement of atoms in 

the diffracting planes. The atoms in the unit cell scatters strongly in certain directions and weakly in 

others. The structure factor FK contains the structural information. FK gives the result of scattering 

from all of the atoms in the unit cell to form a diffraction peak from a set of (hkl) planes. It is given 

by 

௞ܨ = ∑ ݃௝௝ ௝݂exp	(2ൣ݅ߨℎݔ௝ + ௝ݕ݇ + −]	௝൯expݖ݈ ஻ೕௌ௜௡మఏ
మ

]      -------(3) 

where  

fj is the atomic scattering factor of j th atom ,  

gj is the atomic occupancy factor,  

xi,yi and zi are the fractional atomic coordinates, 

  and Bj the temperature factor .  

The position and intensity of peaks in a diffraction pattern are determined by the crystal 

structure and the Bragg’s Law n = 2dhkl sin. Bragg’s law calculates the angle where constructive 

interference from X-rays scattered by parallel planes of atoms will produce a diffraction peak. In 

most diffract meters, the X-ray wavelength is fixed and consequently a diffraction peak is produced 

at a specific angle 2. The lattice parameters of the unit cell are used to calculate dhkl .  

3.2 Background 
The background intensity ybi  at the ith step may be obtained by any of the following three 

method (1) a specified background function, usually a polynomial (2) linear interpolation between 

user-selected points in the pattern or (3) a user-supplied function. For a simple pattern where most 

peaks are resolved to the baseline, all methods tend to work well. For complex patterns with a high 

degree of overlap, however, the majority of the peaks are not resolved to the baseline, so the 

estimation of the background is difficult. However, the polynomial functions usually used for this 

purpose are largely or entirely empirical. Synchrotron sources due to its excellent signal-to-noise 

ratio, the background in a synchrotron experiment tends to be more sensitive to structural disorder 

and fluctuations than that in a laboratory X-ray experiment. For constant-wavelength neutron source 

the prime contributor to the background is incoherent scattering from the sample container and from 
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the sample itself. The background apart from the phenomenological approach stated above may also 

be based on physical reality such as amorphous component and thermal diffuse scattering.  

3.3 Diffraction Line Profile 
The diffraction profile k is a combination of two effects 5. The first is the instrumental effect 

which includes the instrument geometry, optics, slit systems etc. and the other includes sample 

related effects collectively called the microstructure. This includes crystallite size, microstrain, 

certain defects etc. The two effects hence forth described as g-profile (instrumental) and f-profile 

(microstructure) appears as a convolution and the resultant x-ray diffraction pattern is described by 

the following convolution product 

     h = f * g      ------ (4)    

and the diffraction profile K is physically expressed as  

   ௄ = ∫ ݔ)݂ − ݔ ݔ)݃(′ ݔ݀(′ ′       ------- (5

 where x’ is expressed in 2. Thus it becomes clear from the structure of above equation that if 

sample microstructure is taken into account in a rigorous sense the calculated intensity is extremely 

complicated to calculate.   

3.3.1 Instrumental Contribution 

The instrumental contribution is generally classified into two types. One arises out of the slit 

geometry and the other due to spectral distribution of the X-ray emission profile 

(1) Spectral distribution (W) 

The inherent spectral profile of the K1 line from a Cu target sealed X-ray tube has a breadth 

of 0.51810-3Å 9 and is approximately Cauchy and not completely symmetric. Usually due to the 

presence of K2 and other satellite components K3,4 additional smearing takes place. The spectral 

dispersion varies as tan and it can dominate the diffraction line profiles at high angles. 

(2) Instrumental contribution (G) 10 

These are non-spectral contribution  

a) The x-ray source image in a sealed tube system can be approximated with a symmetric 

Gaussian curve with a FWHM of 0.02 at a take-off angle of 3. 

b) The flat specimen used in most experimental set-up introduces a cot dependence on the line 

breadth and produces a small asymmetry in the profile. It is particularly noticeable at low 

diffraction angles where the irradiated length of the sample is large. 

c) Axial divergence of the incident beam follows an approximately cot dependence at low 

angles and causes substantial asymmetry in the profile. 
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The other slit systems also produce additional small broadening in the diffraction profile. A 

sum total of all these effects are generally referred to as instrumental contribution.  

The different contributing factors to the profile shape function discussed in the previous 

section forms the basis of the appropriate choice of the profile shape function. Unlike the case of 

neutron diffraction where the profile shapes are nearly Gaussian and symmetric (except for T-O-F 

neutron data), the better resolution of the x-ray powder diffractometer indicates that more individual 

contribution to the line shape are likely to be observed experimentally. Further depending on the 

nature of the specimen (i.e. the degree of lattice imperfections), the asymmetry in the line profile 

(arising out of instrumental contribution as well as specific specimen effects like twin faults and 

compositional inhomogeneity) and the variation of the line shape with diffraction angle (at low angle 

the instrument controls the line shape whereas at high angle spectral distribution is more prominent) 

fitting of X-ray diffraction lines is difficult. 

Early X-ray Rietveld studies and Integral breadth methods discarded the assumption of 

simple profile shape functions like the Gaussian or Cauchy (Lorentzian) for X-ray line profiles and 

established that tunable functions like Voigt, pseudo-Voigt  and the Pearson VII functions are likely 

to be the better choice for X-ray line profiles 11. All the functions described above fits only the 

symmetric part of the profile. To include line profile asymmetry other additional functions are to be 

used. The demanding need for a more flexible single function to model asymmetric X-ray lines gave 

rise to the split-type functions like Split pseudo Voigt, Split Pearson VII, having different widths and 

asymmetries for different halves of the profiles. Table 1 gives a list of functions generally used in 

Rietveld refinement. 

Regardless of the type of peak-shape function selected, the range of the peak (i.e. when it no 

longer contributes to peak intensity) must be established. This truncation effect renders all the 

functions assumed to be finite which may lead to truncation errors.  As a rule of thumb, a peak can 

be considered to be down to background level when the intensity is less than 0.1±1.0% of the peak 

maximum. The appropriate percentage depends upon the peak shape. If the tails of the peaks are long 

(indicative of a Lorentzian character), a wider range will be required than for peaks with more 

Gaussian character. The range needed depends upon the FWHM of the peak. It is usually expressed 

as an integral number of FWHM values. Typically, the value ranges from 10 to 20 times the FWHM 

depending upon the Lorentzian character of the peak.  

There are two approaches to determine the instrumental contribution g  

(a) Measuring it with a standard specimen like NIST SRM’s, or 

(b) Fundamental Parameter or Ray Tracing approach.  

Both these method are now being used in several computer programs for Rietveld refinement. 
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One important aspect of Rietveld analysis is to determine the angular dependence of the profile shape 

parameters. In the original Rietveld program, the dependence of the FWHM (full-width-at-half-

maximum,) H of the reflection profiles was modelled as the Caglioti equation 12 

ܪ    = 	 ߠଶ݊ܽݐ	ܷ] + ߠ݊ܽݐ	ܸ + ܹ]ଵ ଶൗ      ----- (6)      

  This formula worked satisfactorily for the initial developed medium (or less) resolution 

powder diffractometers where the instrumental function was predominantly Gaussian. Even with the 

x-ray diffractometers operating on sealed-off x-ray tube and rotating anode, whose instrumental 

profiles are neither Gaussian nor symmetric, Caglioti function was widely used for the lack of 

anything better.  

An essential step in applying Rietveld method on data from modern diffractomenters is to 

examine the variation of FWHM (or integral breadth) with 2 or d* and to compare this with the 

resolution curve of the instrument used. If the two curves are identical, indicating that sample effects 

are negligible, then Caglioti formula can be used to model breadth variation. If the curves differ, but 

the scatter for the sample curve is not greater than that would be expected from counting statistics or 

there is no marked 'anisotropy', on the average, then also one can model the breadth of the profile 

with Caglioti formula, but this time U, V and W should be treated as refinable parameters. But if the 

sample curve exhibits a scatter which is 2 or d* dependent, then the nature of 'anisotropic' breadth 

variation must be ascertained and the dependence of breadth on hkl has to be modelled with special 

care. 

A more suitable formulation applicable to x-ray method is to use the Modified TCH pseudo- 

Voigt function where the Gaussian and Lorentzian contributions have different dependence on 

diffraction angle  13.  (see Table 1)   
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Table No. 1: Profile Shape Functions used in Rietveld Refinement 

S.No Profile shape Analytical formula 
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3.3.2 Sample Contribution  

Apart from the inherent width (or Darwin width) produced by a perfect crystal, there are two 

principal physical sample effects which contribute to the broadening of the f profile. Scherrer (1918) 
14 pointed out that if crystallite size is less than 1 m then the integral breadth varies as  

   = 

 Cos                            ------- (7) 

where  is the X-ray wavelength and  is the crystallite size.           

 Microstrains also broaden the f profile according to the relation (Stokes and Wilson 1944) 15 

   = k tan                           -------- (8) 

where  is the microstrain and k is a constant whose value depends on the definition of microstrain 

used. 

In general, sample induced line broadening includes contributions which are independent of 

2 or d*, known as 'size effect'. The other contribution which depends on 2 or d* is known as ‘strain’ 

effect collectively.  
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There have been various attempts to make allowance for smoothly varying (isotropic) 

microstructural effects in Rietveld programs. David and Matthewman 16 modelled experimental line 

profile by means of a Voigt function and assigned the 'Lorentzian' and 'Gaussian' components to the 

'size' effects and the instrumental broadening respectively. A different approach was adopted by 

Howard and Snyder in the program SHADOW,17 who convoluted a Lorentzian simple line profiles, 

assumed to be due to 'crystallite size' and/or 'microstrains', with experimentally determined 

instrumental  profiles, to match the observed data. The simultaneous presence of isotropic 'size' and 

'strain' effects was considered by Thompson, Cox and Hastings 13. They used a psuedo-Voigt function 

to model the overall line broadening and assigned the Lorentzian components of the psuedo-Voigt 

functions to 'size' effects and Gaussian components to the combined 'strain' and instrumental 

contributions. All the above models are phenomenological in nature and lacks physical basis as has 

been shown by later authors that both size and strain breadths may contain Gaussian and Lorentzian 

components 18.   

 An early attempt to model anisotropic line broadening in the Rietveld method was made by 

Greaves 19, who assumed that the crystallites had the form of platelets with thickness H and infinitely 

large lateral dimensions. In this case the contribution to the integral breadth of reflection from plates 

parallel to the surface, in the reciprocal unit, is simply . In order to allow for the direction 

dependence of microstrain, some assumptions must be made regarding the stress distribution. If this 

is assumed to be statistically isotropic, then the anisotropy of the elastic constants leads to an hkl 

dependence of strain. Thompson, Reilly and Hastings 13, expressed microstrain as a function of hkl 

indices and refined appropriate strain parameters based on elastic compliances. Simultaneous 

anisotropic ‘size’ and ‘strain’broadening was incorporated in the Rietveld method by Le Bail 20 and 

Lartigue, Le Bail & Percheron-Guegan 21. The hkl dependent nature of these quantities was modelled 

by means of ellipsoids and size Fourier series was employed to represent the line profiles. The 

number of microstructural parameters to be refined was restricted by adopting Lorentzian function 

for ‘size’ contributions and an intermediate Lorentz-Gauss function for ‘strain broadening. In a 

similar approach Lutterotti and Scardi 22 first included crystallite size and microstrain as refinable 

parameters, in the place of usual angular variation line-profile width Caglioti parameters. 

3.3.3 Two-stage Approach 

 The approaches discussed above is purely phenomenological and do not have any apriori 

basis. The primary reason for modelling crystal-imperfection and instrumental effect in the Rietveld 

method is to provide an accurate description of line-profile breadths and shapes, and therefore of the 

associated intensities, and, ideally, of the displacement of peaks from their true Bragg positions. 

H
1
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Peak shifts arise from instrumental aberrations, from specimen transparency and displacement, from 

imperfections (e.g 'mistakes' and non-stoichiometry) and from homogeneous (macro) strain. Owing 

to the possible complexity of microstructural features, and the fact in general the nature of any 

imperfection present is not known apriori, accurate modelling of line profiles for use in a Rietveld 

analysis can be very difficult to achieve. Therefore a two-stage approach is recommended.  

 In the first stage the position, intensity, breadth and some shape parameter (e.g. 

Lorentzian/Gaussian fraction or Pearson VII parameter) of individual lines are obtained by pattern 

decomposition 23-26, for which no structural information is required. From these parameters the 

dependence of breadth and shape as the function of position and direction in reciprocal space (  or 

d* and hkl dependence) can be determined for all peaks. These parameters can then be predicted for 

reflections not found by pattern decomposition, owing to too severe overlap or too low intensity. If 

desired, the results of pattern decomposition can be interpreted in terms of microstructural 

properties. Also, the pattern can be indexed, if the unit cell is not already known, and the precise cell 

dimension can be obtained after the line positions have been corrected for systematic errors. The 

latter are not necessarily obtained from Rietveld program with the same accuracy, since refinement 

of cell dimension along with other parameters merely absorbs peak shifts due to any instrumental 

aberration for which no allowance has been made and shifts due to lattice imperfections. If the cell 

parameters are known, a special constrained pattern-decomposition method can be applied. Another 

advantage of using pattern-decomposition is that intensities of unambiguously indexed Bragg 

reflections can be used in ab-initio structure determination.  

In the second stage, (semi)empirical relationship describing the behavior of breadth, shape 

and perhaps position of lines as a function of  (or d*) and hkl are used in the Rietveld refinement. 

After the line-profile parameters are obtained by means of pattern-decomposition, the variation of 

breadth and shape parameters with  or d* is examined. This is an essential preliminary step in all 

applications of the Rietveld method. By comparing the breadth variation with the resolution curve of 

the instrument used, the significance of any sample broadening is immediately apparent. Also, from 

the scatter of the plot, it can be ascertained whether the broadening is 'isotropic' or 'anisotropic'. If 

practicable, it is clearly desirable at this stage to reduce crystal imperfection broadening by suitable 

treatment of the specimen, such as annealing, for example. In any event, the breadth versus  or d* 

plot can provide a basis for subsequent modelling of line breadth in the refinement of the structure. 

On the basis of the above following cases may arise. 

(a) Isotropic case 

If the breadth and shape parameters vary smoothly, with a scatter attributable solely to 

counting statistics, then microstructural effect is either negligible or their contribution is 'isotropic'. 

2

2

2

2
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By fitting suitable functions (e.g. psuedo-Voigt) to these curves, an empirical description of the 

breadth (FWHM for psuedo-Voigt) and shape (  for psuedo-Voigt) can be incorporated in the 

Rietveld method. The nature of the functions used in the isotropic case is unimportant, provided that 

residual systematic errors after fitting are negligible. 

(b) Anisotropic case 

If the scatter in the breadth (FWHM) versus  or d* plot is clearly greater than that would be 

expected on statistical ground, hkl (lattice direction) dependence is indicated. There are then various 

ways of modelling breadth and shape parameters in the anisotropic case.  

(i) The simplest, which may be acceptable if the 'anisotropy' is not too severe, is to obtain the 

average curves and proceed as in the 'isotropic' case. If the widths lie on two or more curves which 

correlate with particular family of hkl, then each can be modelled separately, with provision for the 

lattice-direction dependence. Such selective broadening is typical of layer structures with stacking 

faults.  

(ii) For a more rigorous treatment of anisotropic broadening, the breadth variation needs to be 

examined in detail. Firstly after correction for instrumental effect the order-independent and order-

dependent contributions to the line profiles are separated, to ascertain if only one or both are 

appreciable. 

If the order-dependent broadening is negligible, the lattice direction dependence of breadth 

can be deduced by assuming that on average domains have particular shapes. From a least squares 

comparison of the observed values of the domain size and those calculated for the selected shape and 

orientation of domains with respect to the crystallographic axes, the breadth can be predicted for all 

reflections. 

A similar approach can be adopted for the 'strain only' case, where the assumption of an 

ellipsoid may suffice to describe the lattice direction dependence of the (mean strain) strain 

component considered. Alternatively, for a give state of stress, an expression for the (mean strain) 

strain component considered can be derived containing terms depending on hkl, elastic compliances 

and stress components. The number of these terms depends on the crystal symmetry. Then the non-

hkl dependent parameters in either of the expression of the 'strain' components can be determined be 

(least-squares) fitting.  

If both 'size' and 'strain' broadening are present, the above approaches can be adopted for 

both the order-independent and order-dependent contributions and h (or (*)h) for each reflection 

used in the refinement can be obtained from a successive 'convolution' of all component concerned. 

 



2
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3.4 The Lorentz Polarisation Factor 

Another factor which affects the intensity at a particular value of 2 is the Lorentz-

Polarisation factor 10. It is dependent on the instrument geometry used for data collection. The 

condition for obtaining diffraction is that a reciprocal lattice point is on the Ewald circle. The total 

intensity we record when a reciprocal lattice point passes the circle will be proportional to the time it 

takes to cross it. At a given angular velocity , a reciprocal lattice point with a long reciprocal lattice 

vector will move faster than one with a short. Thus a reciprocal lattice point has to travel a certain 

distance to ensure that all the diffracted intensity from a particular reflection is captured. The 

correction factor is referred to as the Lorentz factor. For Bragg-Brentano geometry the factor is 

(ߠ2)ܮ = 	 (1 sin ߠ2 cosߠ⁄ )     -------- (9)  

Apart from the Lorentz factor there is another factor which is known as the Polarisation 

factor which arises due to the fact that the incident X-ray is unpolarised whereas the scattered one is 

polarized. The combined Lorentz-Polarisation correction term is given as 

ܲܮ     = 	 ଵା௖௢௦
మଶఈ	௖௢௦మଶఏ

௦௜௡మఏ	௖௢௦ఏ
    ---------(10) 

             

3.5 Preferred Orientation 
By preferred orientation it is meant that the crystallites tend to arrange themselves according 

to their habit. Flat crystallites tend to be stacked. A proper powder diffraction pattern requires a 

random crystallite orientation. Any preferred orientation will show up as an incorrect intensity 

distribution, but the peak positions will remain the same. The problem can be reduced by careful 

sample preparation, for reflection geometry side-loading or back-loading is preferred. If preferred 

orientation cannot be eliminated by sample preparation alone suitable corrections must be applied 

during Rietveld refinement. The two mostly used models are 1) Rietveld –Toraya model 1,2 and 2) 

March-Dollase model 27 

  ுܲ = 	 ଶܩ + 	(1− (ଶܩ exp(ܩଵ	ߙுଶ)   ----------- (11) 

                                       

   ுܲ = 	 ቂ(ܩଵ 	cosߙு)ଶ + 	 ௦௜௡
మ	ఈಹ
ீభ

ቃ
ିయమ   ----------- (12)  

3.6 Criterion of Fit   
The beauty of the Rietveld method lies in that it allows simultaneous adjustments of 

structural parameters, profile parameters, unit cell, background etc.  
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In the non linear least squares minimization process derivatives of the calculated intensities with 

respect to each adjustable parameter is taken and subsequently equated to zero. It gives us a set of 

normal equations. From the normal equations we may write Mx=V where M is an p x p matrix, p 

being the number of refined parameters with elements Mkl =  wi(yci /pk)(yci/pl). The summation 

is performed over all observations. x is a p-dimensional vector with the parameters shifts, pk, as its 

elements. V is also a p-dimensional vector with elements Vk= wi(yci-yi)(yci/pk). By inverting the 

matrix M and multiplying with V gives the solution to the parameter shifts x=M-1V. The solution 

thus gives us the parameter shifts relative to the starting parameters. After applying the shifts to the 

original parameters, the procedure is repeated until convergence is reached.  

Thus it is clear that as the number of adjustable parameters increase the size of the normal 

matrix also increases and subsequently the computer time. Moreover the starting model should be 

accurate otherwise the parameter values will diverge. This is in essence true for any non-linear least 

squares algorithm. The refinement process runs till the residuals are minimized and a ‘best fit’ is 

achieved. However, the criterion of ‘best fit’ is closely linked with the accuracy of the starting 

model. The most important fact is that a ‘global minima’ should be reached (model inaccuracy may 

lead to false ‘local minima’). Normally two kinds of errors occur, the counting statistical error and 

model error (which is a systematic error). The residuals Rbragg and Rstructure-factor are model dependent 

whereas Rprofile or R weighted-profile or Rexp depends on the profile model used and are affected by 

counting statistics 28. Another important measure is the ‘estimated standard deviation’-which is of 

course a measure of precision not accuracy of the model involved. It is important to note that some 

systematic errors (like preferred orientation, anisotropic line broadening, bad crystal statistics and 

other specimen errors) 29-31 are not considered in the e.s.d’s but still large inadequacies may project 

them as random errors and the Rietveld refinement can largely be wrong. 

3.6.1 R-Factors 

As a visual guidance the difference plot is probably the best way of judging the progression 

of a Rietveld refinement. The reliability of the fit of the calculated pattern to the observed data can 

also be given numerically. This is usually done in terms of agreement indices or R values. There are 

several reliability factors. The most important is the Rwp.  

The weighted-profile R value, Rwp, is defined as 

      

2
1

2

2

]
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[


 


i
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i
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--------(13) 

                           



Apurba Kanti Deb et al., IJSRR 2019, 8(2), 2206-2229 

IJSRR, 8(2) April. – June., 2019                                                                                                         Page 2221 
 

where yi is the observed intensity at step i, yci the calculated intensity, and wi the weight. The 

expression in the numerator is the value that is minimized during a Rietveld refinement. The quantity 

yi includes the background contribution. The high background will automatically produce a low Rwp 

value, because a significant part of the intensity is accounted for by the background function. Thus, 

the comparison of Rwp values from different kinds of powder diffraction experiments can be 

extremely misleading. For example, Rwp for neutron TOF data are often quite small (e.g. a few %), 

while those for laboratory X-ray data are larger (e.g. 10%). Ideally, the final Rwp should approach the 

statistically expected R value, Rexp
 defined as, 

2
1

2exp ][





i
ii yw

PNR

  ---------- (14)                     

 

where N is the number of observations and P the number of parameters. The index Rexp gives 

an indication of the quality of the data or counting statistica. The ratio between the two, Rwp/Rexp
 is 

called the goodness-of-fit or GoF. The GoF should ideally approach 1. If the data have been over a 

sufficient time (if the noise is less) Rexp will be very small and GoF will be much larger than 1. 

Conversely, if the data have been collected too quickly (a noisy pattern), Rexp will be large and GoF 

could be less than 1.  

The approximate error magnitudes can be calculated from the ‘estimated standard deviation’ 

of the refined parameters. In least squares refinement esd’s are computed as  

  ii
iim S

N P



[ ] /1 2                     ------- (15) 

where mii are diagonal elements of the inverse matrix of the equation coefficients. The esd’s are used 

as convergence criterion of the minimization process.  

4. REFINEMENT GUIDELINES 

4.1 Data Collection Strategy 
It is essential to collect a good quality data prior to any refinement. The points that should be 

considered prior to data collection are the geometry of the diffractometer, the quality of the 

instrument alignment and calibration. For usual Bragg-Brentano geometries, it is important that the 

incident beam be kept on the sample at all angles to ensure a constant-volume condition. This is 

achieved by automatic divergence slits. For good counting statistics throughout an Xray powder 

diffraction pattern, more time should be spent on data collection at high angles where the intensities 

are lower. There should be at least five steps across the top of each peak (i.e. step size = FWHM/5, 

where FWHM is the full width at half-maximum), the time per step should approximately 

compensate for the gradual decline in intensity with 2. Another problem is that of sample 
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transparency. The assumption for reflection geometry is that the sample is `infinitely thick' (i.e. the 

X-ray beam is totally absorbed by the sample). 

4.2 Computer Programs 
Several programs on Rietveld method have been written. Some programs are freely available 

whereas others are commercial. One of the earliest programme is DBWS 32. Other robust programme 

includes GSAS 33, FULLPROF 34, RIETAN etc. These programs are available free of cost and can be 

downloaded from the corresponding sites.  It has been shown that more information can be obtained 

on microstructure of the samples by introducing line broadening analysis into Rietveld method. The 

program MAUD 35 is very robust in this regard. It can be applied with ease for Structure Refinement 

as well as Microstructural Refinement.  

For all the programs there is a common list of parameters. They are described as given 

below. 

The general parameters which affect each phase are  

 Background parameters; 

 Intensity, position and width of the amorphous halos (if present); 

 Three parameters for peak width (U,V,W), the gaussianity of psuedo-Voigt function and 

parameters for asymmetry. All these parameters are fixed once a standard (Si standard) 

profile has been refined; 

 Sample displacement, absorption, transparency, beam divergence, These parameters are 

necessary to model some frequent errors influencing peak position; 

The phase specific parameters for each phase are 

 Scale factor; 

  Lattice parameters; 

  Atomic positions and displacements; 

  Atomic occupation number; 

  Temperature factor (isotropic and anisotropic); 

  Preferred orientation parameters (March-Dollase, harmonic trexture, WIMV) 

 Crystallite sizes and microstrains along different crystallographic directions and their average 

values; 

  Intrinsic and extrinsic stacking faults and twin fault probabilities; 

  Antiphase boundary. 
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Prior to any fitting an input parameter file containing approximate values of the above 

parameters should be prepared. Once the parameter file is created and experimental data is loaded 

and the calculated XRD spectrum corresponding to the structure described by input parameters is 

synthesized.   

To refine the microstructure, i.e. crystallite size and microstrain, the pattern of the 

instrumental standard must be refined first. This procedure is necessary to define the instrumental 

peak width, shape and asymmetry as a function of 2. However, if broadening effect is negligible, 

crystallite size and microstrain can be set zero so that the program can run using the usual Caglioti 

formula as other Rietveld refinement routines do. But if there is broadening we use various models to 

describe the trend of the profile width considering crystallite size and microstrain anisotropy. There 

are option for refinement of stacking and twin fault probabilities and texture, if needed in some 

programs. 

The program generates an output file containing for each phase, volume or weight 

percentage, cell parameters, list of reflections including 'd' values, Miller indices, multiplicities, 

structure factors, intensities, crystallite sizes, microstrains and textures. The output files also contain 

the values of stacking and twin fault probabilities of the sample as a whole, if applicable. The quality 

of fitting can be checked from the quality factor GoF displayed after any iteration. 

The basic features of some of the programs are described 

Some of the most important features of applicability of FullProf [34] are summarised below:  

• X-ray diffraction data: laboratory and synchrotron sources.  

• Neutron diffraction data: Constant Wavelength (CW) and Time of Flight (TOF).  

• One or two wavelengths (eventually with different profile parameters).  

• The scattering variable may be 2θ in degrees, TOF in microseconds and Energy in KeV.  

• Background: fixed, refinable, adaptable, or with Fourier filtering.  

• Choice of peak shape for each phase: Gaussian, Lorentzian, modified Lorentzians, pseudo-

Voigt, Pearson-VII, Thompson-Cox-Hastings (TCH) pseudo-Voigt, numerical, split pseudo-

Voigt, convolution of a double exponential with a TCH pseudo-Voigt for TOF.  

• Multi-phase (up to 16 phases).  

• Preferred orientation: two functions available.  

• Absorption correction for a different geometries. Micro-absorption correction for Bragg-

Brentano set-up.  

• Choice between three weighting schemes: standard least squares, maximum likelihood and unit 

weights.  

• Choice between automatic generation of hkl and/or symmetry operators and file given by user.  
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• Magnetic structure refinement (crystallographic and spherical representation of the magnetic 

moments). Two methods: describing the magnetic structure in the magnetic unit cell of 

making use of the propagation vectors using the crystallographic cell. This second method is 

necessary for incommensurate magnetic structures.  

• Automatic generation of reflections for an incommensurate structure with up to 24 propagation 

vectors. Refinement of propagation vectors in reciprocal lattice units.  

• hkl-dependence of FWHM for strain and size effects.  

• hkl-dependence of the position shifts of Bragg reflections for special kind of defects.  

• Profile Matching. The full profile can be adjusted without prior knowledge of the structure 

(needs only good starting cell and profile parameters).  

• Quantitative analysis without need of structure factor calculations.  

• Chemical (distances and angles) and magnetic (magnetic moments) slack constraints. They can 

be generated automatically by the program.  

• The instrumental resolution function (Voigt function) may be supplied in a file. A 

microstructural analysis is then performed.  

• Form factor refinement of complex objects (plastic crystals).  

• Structural or magnetic model could be supplied by an external subroutine for special purposes 

(rigid body TLS is the default, polymers, small angle scattering of amphifilic crystals, 

description of incommensurate structures in real direct space, etc).  

• Single crystal data or integrated intensities can be used as observations (alone or in combination 

with a powder profile).  

• Neutron (or X-rays) powder patterns can be mixed with integrated intensities of X-rays (or 

neutron) from single crystal or powder data.  

• Full Multi-pattern capabilities. The user may mix several powder diffraction patterns 

(eventually heterogeneous: X-rays, TOF neutrons, etc.) with total control of the weighting 

scheme.  

• Montecarlo/Simulated Annealing algorithms have been introduced to search the starting 

parameters of a structural problem using integrated intensity data.  

Another very robust program is MAUD 35 which stands for Material Analysis Using 

Diffraction. It is a general diffraction/reflectivity analysis program mainly based on the Rietveld 

method. The main features of MAUD are 

 Written in Java can run on Windows, MacOSX, Linux, Unix (needs Java VM 1.7 or 

later). 

 Easy to use, every action is controlled by a GUI. 
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 Works with X-ray, synchrotron, Neutron, TOF and electrons. 

 Developed for Rietveld analysis, simultaneous multi spectra and different 

instruments/techniques supported. 

 Ab-initio structure solution integration, from peak finding, indexing to solving 

 Different optimization algorithms available (Least Squares, Evolutionary, Simulated 

Annealing, Metadynamics, Simplex, Lamarckian…). 

 Le Bail fitting. 

 Quantitative phase analysis wizard. 

 Microstructure analysis (size-strain, anisotropy, planar defects, turbostratic disorder and 

distributions included). 

 Texture and residual stress analysis using part or full spectra. 

 MEEM and superflip algorithm for Electron Density Maps and fitting. 

 Thin film and multilayer aware; film thickness and absorption models. 

 Reflectivity fitting by different models, from Parratt (Matrix) to Discrete Born 

Approximation. 

 Fluorescence full pattern fitting based on crystal structure models (XRF and GIXRF full 

quantification). 

 Works with TEM diffraction images and electron scattering. 

 Several datafile input formats. 

 Works with images from 2D detectors (image plates, CCDs, flat or curved), integration 

and calibration included. 

 CIF compliance for input/output; import structures from databases. 

5. SUMMARY AND CONCLUSION 
In spite of the tremendous success of the method there seems to be one or two points which 

puts a question mark on the reliability of the method. The first conflict arises between the two classes 

of refinement parameters. The structural parameters depend on the integrated intensities of the 

profile parameters which depend primarily on the peak shapes and hence on the intensities at each 

step. Simultaneous refinement of both classes of parameters thus leads to open criticism as done by 

Cooper et al. 36 According to Cooper et al. Rietveld Method should be replaced by a two-stage 

procedure-profile parameters are refined in the first stage and the structural parameters in the second. 

In spite of this theoretical limitation, Rietveld Method appears to give reliable results for the 

structural parameters and reasonable estimates of the corresponding standard deviations. Another 

limitation which may be more serious is the anisotropic line broadening for imperfect crystalline 
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materials arising out of the crystallite size and non-uniform microstrain effects. As a consequence the 

profile parameters do not vary smoothly with the diffraction vector. Most of the Rietveld Refinement 

programs which incorporates size-strain analysis is based Voigt specimen broadened profile and 

isotropic size strain behaviour and the Rietveld method thus need to be replaced by a two-stage 

procedure as suggested earlier. Incorporation of direction dependent broadening effect in the 

Rietveld method can thus provide a better insight into the structural parameters extracted from it.  

 The increasing complexity in the field of Materials Science, Crystallographic problems forces 

one to rethink the existing domains and earmarks the area of future developments in the Rietveld’s 

method. It was shown by various workers that precision in the data is rarely a limiting factor in the 

precision of the structural results. The domain of the applicability of Rietveld method is increasing 

day by day. The main focus of Structure refinement in 1969 has now smeared out to a host of 

applications. Apart from the usual studies on “dead” samples - the field of standard powder 

crystallography, studies on “real” materials -non-equilibrium systems undergoing physical and/or 

chemical changes is gaining thrust. In brief Rietveld method is opening up the field of real-time 

crystallography. Another important area is the ab-initio technique for solving structures from powder 

data. Recent advances in both instrumentation and computational methods have brought us to the 

point where the powder method can easily compete with the single-crystal methods. Improved 

modeling on the instrumental front will certainly lead to physically significant characterizations of 

anisotropic crystallite-size and micro-strain, as well as crystal structure details. Finally in the 

computational area more faster and efficient algorithms will certainly lead to the improvement of the 

method. 

 Numerous computer software are available now-a-days some free others commercial to 

perform the Rietveld refinements. Thus it is fast becoming a global phenomenon started way back in 

1969. The citation index of Rietveld’s original method is increasing day-by-day. Finally a point of 

warning to the users as given by Prince, ‘Estimated standard deviations are a measure of precision 

not accuracy’. So be aware of wrong models!    
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