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ABSTRACT 

Asingle species age-structured fishery model is formulated using Ricker model relationship 

under age dependent harvesting condition using reserved-unreserved area fisheries technique. Here, 

atthe initial period during which the growth of the species is not much, harvesting is performed as the 

species is inside reserved area. After a certain age the species infiltrate into the unreserved area, 

where harvesting is permitted.  Here, harvesting rate is assumed to be proportional to the available 

bio-mass (number of species) of different age group population and decreases with the age of the 

species. The modified Leslie matrix for the present models is derived. Stability of the system is 

studied from the eigen values of the modified Leslie matrix.  
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INTRODUCTION  
In reality, most natural biological populations are subjected to complex dynamic processes 

that cannot be described by simple continuous time models. In fish population, for example, 

recruitment to the fishable stock may only occur several years after spawning of the existing adult 

population. Furthermore, the entire life history of fish and other organism is generally subjected to 

strong seasonal or periodic influence. Discrete single species insect population model was developed 

by Nicholson and Baily1 and after that another single species discrete population was studied by 

Maynard Smith2, 3, May4etc. The number of individuals within a population is often kept under 

control by the changes in the maternity function of the females. These changes may occur in 

response to the values of some demographic parameters, total size of the population, birth rate, 

cohort density, the ratio of older and younger females, the ratio of males to females and so forth. 

Another factor is also due to the change in the mortality of the population. So, discrete age structure 

model is very much important to discuss the real phenomena. The recruitment of fish is very much 

important in age structure fish population model. Some researcher considered the rate of recruitment 

of fish in different age class as constant. One may refer to Gurtin & Macany5, De Angelis6, Dekker7, 

Landel and Hersen8. Kapur9etc. But in reality, the rate of recruitment of fish is not constant and it is 

population dependant. Ricker10,11 developed a model known as Ricker spawner-recruitment model 

and it has an important role during many years in the area of fishery science. But in this model, there 

are several restrictions. Neave12,Clark13, 14, Gulland15 and May16 observed that the possibility of 

dispensatory stock-recruitment relationships has an important role in fishery management and this 

factor was not considered by Ricker10,11.  

Ricker model is simply density dependant population model in the fishery management. 

Another recruitment functions in fish population model are discussed by May17, May and Oster18 and 

Oster19. Levin and May20 and Clark21 also developed fishery model considering the interaction of 

density dependence with age structure. After that there was necessary to develop an ecologically 

acceptable strategy for harvesting of a renewable resource such as fish, animals etc. and also the 

optimum strategy for maximum sustainable yield with the minimum effort. M. B. Schaefer22 first 

considered the above economic factor and formulated a model with logistic growth. He considered 

the catch-per-unit effort hypothesis to represent the rate of harvesting. Clark14 developed several 

population models considering different forms of harvesting. Rotenberg23 also considered the logistic 

model with harvesting. Later on, Goodyear24,Levin and Goodyear25 introduced an age-structured 

fishery model introducing the reproductive delay with deferred reproduction and the truncated delay 

associated with an eventual levelling off of fecundity in latter age classes. They studied the stability 

of the system under above two delays separately and combining. But, in their analysis, the harvesting 
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which is an important part in fish population was ignored.  

In this paper, we have extended the work of Levin and Goodyear25introducing areal-life form 

of harvesting and presenting the results in detail under the reproductive delay, during this period of 

time the species are in reserved area, where no harvesting can take place. Hence a discrete age- 

structured single species population model is formulated under age dependent harvesting condition 

of mature species. In this model, we consider the rate of stock recruitment as Ricker spawner-recruit 

function in different age group. In this formulation, some realistic conditions on harvesting are 

incorporated. In some countries, governments impose restriction on the harvesting of immature 

population of some species such as fishes. Generally, fishermen throw the smaller fishes back into 

the water. It is fact that withdrawal of a species decreases with the age of the species. Hence, in the 

present model, the species of age group 0 to 2 is not considered for harvesting and after that 

harvesting is performed. Its rate is directly proportional to the available biomass of different age 

group population and decreases with the age of the species. The modified Leslie matrix for the model 

is derived. Stability of the system is discussed by Perror-Frobenius theory. A simple approximation 

of this model considering two age classes is formulated and its stability is discussed. Also, its 

stability diagram is presented through numerical values. Another simple approximation of this model 

is also developed considering two stage delay production and its stability is also discussed.  

BASIC MODEL 
Let us consider a fish population which are divided into different classes according to their 

ages in years, as ݔଵ(ݐ),ݔଶ(ݐ),ݔଷ(ݐ), ···,  Also, we assume that each class can give birth. Here.(ݐ)௡ݔ

we assume that the model is one sex model as we take into account only the changes in female 

populations. Now for each such age class there is a maternity, the number of new born next year 

spawned by an average individual of age ݉௜this year, because of density dependence ݉௜is not 

constant. Now we consider the rate of harvesting ℎଶ,···,ℎ௡ିଵof	the	populationݔଶ(ݐ),ݔଷ(ݐ), ···,

 respectively, as in this paper we have consider that first two age groups are inside the marine (ݐ)௡ݔ

protected area, where harvesting is not allowed. 

And let ݌௜ , (݅ = 1, 2,···,݊ − 1; 0 < 	݅݌ ≤ 1) Be the proportion of females of the ݅ −  ℎaݐ

Agegroup at time ݓ,ݐℎ݋ are surviving to become females of (݅ + 1) 	−  ℎ age group at timeݐ

	ݐ) + 	1).  

Let, ݅ܭ	 =Average number of eggs of females of age class ݅, in any year, and indicates the 

parental egg production for that year. Therefore  

ܲ = ∑ ௜௡ܭ௜ݔ
௜ୀଵ                                                          (1)                                                                              

Now from the Ricker relationship, the number of recruits for the following year i.e. the new 
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value of ݔ௜is  

′௜ݔ =  (2)                               (ܲߚ−)݌ݔ݁	ܲ	ොߙ

whereߙො = density-independent probability of surviving from egg to age 1 andߚ	 =coefficient 

of density dependent mortality. With this we can write,  

݉௜ =                                                                                                                (3)                              (ܲߚ−)݌ݔ݁	௜ܭොߙ

Therefore,the model can be expressed as 

ݐ)ଵݔ + 1) = 	݉ଵݔଵ(ݐ) + ݉ଶݔଶ(ݐ) + ݉ଷݔଷ(ݐ) + ⋯+ ݉௡ݔ௡(ݐ)
ݐ)ଶݔ + 1) = 	 (ݐ)ଵݔଵ݌

ݐ)ଷݔ	 + 1) = 	 (ݐ)ଶݔଶ݌ − ℎଶݔଷ(ݐ)
⋮

ݐ)௥ାଵݔ + 1) = 	 (ݐ)௥ݔ௥݌ − ℎ௥ݔ௥ାଵ(ݐ)
⋮

ݐ)௡ିଵݔ + 1) = 	 (ݐ)௡ିଶݔ௡ିଶ݌ − ℎ௡ିଶݔ௡ିଵ(ݐ)
ݐ)௡ݔ + 1) = 	 (ݐ)௡ିଵݔ௡ିଵ݌ − ℎ௡ିଵݔ௡(ݐ) ⎭

⎪
⎪
⎬

⎪
⎪
⎫

                                                                                

(4) 

Now let us consider ℎଶ = 	ℎ, ℎ௜ = 	ܴℎ௜ିଵ, ݅	 ≥ 	3withܴ < 1.So, model (4) is of the form 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ଵݔ

ݐ) + 1)
ݐ)ଶݔ + 1)
ݐ)ଷݔ	 + 1)

⋮
ݐ)௥ାଵݔ + 1)

⋮
ݐ)௡ିଵݔ + 1)
ݐ)௡ݔ + 1) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
݉ଵ
ଵ݌
0
⋮
0
⋮
0
0

݉ଶ
0
ଶ݌
⋮
0
⋮
0
0

݉ଷ
0
−ℎଶ
⋮
0
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋮
⋯
⋯

݉௥
0
0
⋮
௥݌
⋮
0
0

݉௥ାଵ
0
0
⋮

−ℎ௥
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋮⋯
0

݉௡ିଵ
0
0
⋮
0
⋮

−ℎ௡ିଶ
௡ିଵ݌

݉௡
0
0
⋮
0
⋮
0

−ℎ௡ିଵ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ଵݔ

(ݐ)
(ݐ)ଶݔ
(ݐ)ଷݔ	
⋮

(ݐ)௥ାଵݔ
⋮

(ݐ)௡ିଵݔ
(ݐ)௡ݔ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (5) 

 

Or, ܺ(ݐ + 1) =                                                                                                                              (ݐ)ܺܣ

(6) 

where, ܣ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
݉ଵ
ଵ݌
0
⋮
0
⋮
0
0

݉ଶ
0
ଶ݌
⋮
0
⋮
0
0

݉ଷ
0
−ℎ
⋮
0
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋮
⋯
⋯

݉௥
0
0
⋮
௥݌
⋮
0
0

݉௥ାଵ
0
0
⋮

−ܴ௥ିଶℎ
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋮⋯
0

݉௡ିଵ
0
0
⋮
0
⋮

−ܴ௡ିସℎ
௡ିଵ݌

݉௡
0
0
⋮
0
⋮
0

−ܴ௡ିଷℎ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 and ܺ(ݐ) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ଵݔ

(ݐ)
(ݐ)ଶݔ
(ݐ)ଷݔ	
⋮

(ݐ)௥ାଵݔ
⋮

(ݐ)௡ିଵݔ
(ݐ)௡ݔ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    

(7) 

For ݎ = 1, system (6) reduces to 
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⎣
⎢
⎢
⎢
⎢
⎡ ଵݔ

ݐ) + 1)
ݐ)ଶݔ + 1)
ݐ)ଷݔ + 1)

⋮
ݐ)௡ିଵݔ + 1)
ݐ)௡ݔ + 1) ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
݉ଵ
ଵ݌
0
⋮
0
0

݉ଶ
0
ଶ݌
⋮
0
0

݉ଷ
0
−ℎ
⋮
0
0

⋯
⋯
⋯
⋮
⋯⋯

݉௡ିଵ
0
0
⋮

−ܴ௡ିସℎ
௡ିଵ݌

݉௡
0
0
⋮
0

−ܴ௡ିଷℎ⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡ ଵݔ

(ݐ)
(ݐ)ଶݔ
(ݐ)ଷݔ
⋮

(ݐ)௡ିଵݔ
(ݐ)௡ݔ ⎦

⎥
⎥
⎥
⎥
⎤

 (8) 

whereߙො relates to ߙ of Ricker model through the relation,  

ොߙ = ఈ
ுೞ

                                                                                                                                                                               

(9) 

whereܪ௦,the stock value of an age 1 recruit, is  

௦ܪ = ∑ ݈௜ܭ௜௡
௜ୀଵ  (10) 

Here ݈௜ =survival probability from age class 1 to age class ݅ and therefore  

݈௜ = ௣భ௣మ⋯௣೔షభ
(ଵା௛)(ଵାோ௛)⋯൫ଵାோ೔షయ௛൯

(11) 

Now we take݈ଵ = 1.  

The life-history strategy of a population is encapsulated in its reproductive function, that is the 

distribution of ܽ௜ = (݈௜݉௜) with respect to ݅. In our model,  

ܽ௜ = ݈௜݉௜ = ௟೔௄೔
∑ ௟೔௄೔

                                                                                                                                  (ܲߚ−)݌ݔ݁	ߙ

(12) 

Hence, in any year, the shape of݈௜݉௜ distribution is identical to that of ݈௜ܭ௜ at equilibrium, 

ܽ௜ = ݈௜݉௜ = ௟೔௄೔
∑ ௟೔௄೔

(13) 

and so 

∑ܽ௜ = 1  (14) 

At equilibrium, the matrix ܣ of (7) can be written as 

ܬ =

⎣
⎢
⎢
⎢
⎢
⎡
ଵߤ
ଵ݌
0
⋮
0
0

ଶߤ
0
ଶ݌
⋮
0
0

ଷߤ
0
−ℎ
⋮
0
0

⋯
⋯
⋯
⋮
⋯⋯

௡ିଵߤ
0
0
⋮

−ܴ௡ିସℎ
௡ିଵ݌

௡ߤ
0
0
⋮
0

−ܴ௡ିଷℎ⎦
⎥
⎥
⎥
⎥
⎤

(15) 

in which 

௜ߤ = ቂ డ
డ௫೔

(݉ଵݔଵ + ݉ଶݔଶ + ݉ଷݔଷ + ⋯+ ݉௡ݔ௡)ቃ
௑ୀ௑ത

= ቂ డ
డ௉
൫ߙො	ܲ	݁(ܲߚ−)݌ݔ൯ቃ

௑ୀ௑ത
. డ௉
డ௫೔

				= ௜(1ܭොߙ − ߚ തܲ)݁(ܲߚ−)݌ݔ
                                               

(16) 

Recalling തܲ = ୪୬ ఈ
ఉ

, we get 
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௜ߤ = ఈෝ
ఈ

(1 − lnܭ(ߙ௜ = (ଵି୪୬ఈ)௄೔
∑ ௟೔௄೔೙
೔సభ

⇒ (ଵି୪୬ఈ)௔೔
௣భ௣మ⋯௣೔షభ

ൣ(1 + ℎ)(1 + ܴℎ)⋯൫1 + ܴ௜ିଷℎ൯൧                                                 

(17) 

The eigen values of ܬ are the roots of the equation 

(ߣ)߶ ≡

௡ߣ − ଵߤ} − (ℎଶ + ℎଷ + ⋯+ ℎ௡ିଵ)}ߣ௡ିଵ − ଵℎ௡ିଵߤ} + ଵ݌ଶߤ − (ℎଶℎଷ + ⋯+ ℎ௡ିଶℎ௡ିଵ)}ߣ௡ିଶ −

ଵℎଵℎଶߤ} + ଵℎଶ݌ଶߤ + ଶ݌ଵ݌ଷߤ − (ℎଶℎଷℎସ + ⋯+ ℎ௡ିଷℎ௡ିଶℎ௡ିଵ)}ߣ௡ିଷ − ଵℎଶℎଷ݌ଶߤ} + ଶℎଷ݌ଵ݌ଷߤ +

ଷ݌ଶ݌ଵ݌ସߤ − (ℎଵℎଶℎଷℎସ + ℎଶℎଷℎସℎହ + ⋯+ ℎ௡ିସℎ௡ିଷℎ௡ିଶℎ௡ିଵ)}ߣ௡ିସ −⋯− ଵℎଶℎଷ⋯ℎ௡ିଶ݌ଶߤ} +

ଶℎଷℎସ⋯ℎ௡ିଶ݌ଵ݌ଷߤ + ⋯+ ߣ{௡ିଶ݌⋯ଷ݌ଶ݌ଵ݌௡ିଵߤ − ଵℎଶℎଷ⋯ℎ௡ିଵ݌ଶߤ} + ଶℎଷℎସ⋯ℎ௡ିଵ݌ଵ݌ଷߤ +

⋯+ ௡ିଶℎ௡ିଵ݌⋯ଷ݌ଶ݌ଵ݌௡ିଵߤ + {௡ିଵ݌⋯ଷ݌ଶ݌ଵ݌௡ߤ = 0                                                                                                                             

(18) 

Therefore, with the help of (13) and (17) we get equation (18) as  

(ߣ)߶ ≡ ௡ߣ − ቄܽଵ(1 − lnߙ) − ቀℎ ଵିோ೙షమ

ଵିோ
ቁቅߣ௡ିଵ − ቄܽଵ(1− lnߙ)ℎܴ௡ିଷ + ܽଶ(1− lnߙ) −

ቀℎଶܴ ଵିோమ೙షల

ଵିோమ
ቁቅ ௡ିଶߣ − ቄܽଶ(1− lnߙ)ℎ + ܽଷ(1 − ln1)(ߙ + ℎ)− ቀℎଷܴଷ ଵିோ

య೙షభమ

ଵିோయ
ቁቅ ௡ିଷߣ −

ቄܽଶ(1− lnߙ)ℎଶܴ + ܽଷ(1 − ln1)(ߙ + ℎ)ℎܴ + ܽସ(1− ln1)(ߙ + ℎ)(1 + ܴℎ)−

ቀℎସܴ଺ ଵିோ
ర೙షమబ

ଵିோర
ቁቅߣ௡ିସ −⋯− ൜ܽଶ(1− lnߙ)ℎ௡ିଷܴ

(೙షయ)(೙షర)
మ + ܽଷ(1 − ln1)(ߙ + ℎ)ℎ௡ିସܴ

(೙షఱ)(೙షర)
మ +

⋯+ ܽ௡ିଵ(1 − ln1)(ߙ + ℎ) … (1 + ܴ௡ିସℎ)ܴ
(೙షభ)(೙షమ)

మ ቅ ߣ − ൜ܽଶ(1− lnߙ)ℎ௡ିଶܴ
(೙షయ)(೙షమ)

మ +

ܽଷ(1 − ln1)(ߙ + ℎ)ℎ௡ିଷܴ
(೙షర)(೙షఱ)

మ + ⋯+ ܽ௡ିଵ(1− ln1)(ߙ + ℎ) … (1 + ܴ௡ିସℎ)ℎܴ௡ିଷ +

ܽ௡(1− ln1)(ߙ + ℎ) … (1 + ܴ௡ିଷℎ)ቅ = 0     (19) 

Equation (19) can be written as 

(ߣ)߶ ≡
௡ߣ

(1 − lnߙ)− ቊܽଵ −
1

(1− lnߙ)ቆℎ
1− ܴ௡ିଵ

1− ܴ ቇቋߣ௡ିଵ

−ቊܽଵℎܴ௡ିଷ + ܽଶ −
1

(1 − lnߙ)ቆℎ
ଶܴ

1 − ܴଶ௡ି଺

1 − ܴଶ ቇቋ ௡ିଶߣ

−ቊܽଶℎ + ܽଷ(1 + ℎ) −
1

(1 − lnߙ)ቆℎ
ଷܴଷ

1− ܴଷ௡ିଵଶ

1 − ܴଷ ቇቋߣ௡ିଷ

−ቊܽଶℎଶܴ + ܽଷ(1 + ℎ)ℎܴ + ܽସ(1 + ℎ)(1 + ܴℎ)−
1

(1− lnߙ)ቆℎ
ସܴ଺

1 − ܴସ௡ିଶ଴

1 − ܴସ ቇቋ ௡ିସߣ

 

−⋯− ൜ܽଶℎ௡ିଷܴ
(೙షయ)(೙షర)

మ + ܽଷ(1 + ℎ)ℎ௡ିସܴ
(೙షఱ)(೙షర)

మ + ⋯+ ܽ௡ିଵ(1 + ℎ) … (1 + ܴ௡ିସℎ)ൠ ߣ −

൜ܽଶℎ௡ିଶܴ
(೙షయ)(೙షమ)

మ + ܽଷ(1 + ℎ)ℎ௡ିଷܴ
(೙షర)(೙షఱ)

మ + ⋯+ ܽ௡ିଵ(1 + ℎ) … (1 + ܴ௡ିସℎ)ℎܴ௡ିଷ +
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ܽ௡(1 + ℎ) … (1 + ܴ௡ିଷℎ)ቅ = 0  (20) 

Since ܴ < 1, so if 1	 <  all of the coefficients in (20) are of the same signand so by Descarte’s ,ߙ	݈݊

rule, there are no positive real roots. If 0	 < lnߙ < 	1, and ܽଵ(1 − lnߙ) > ቀℎ ଵିோ೙షభ

ଵିோ
ቁ, then by the 

Perror-Frobenius theory, the dominant eigenvalue is real, positive and less than 1. Hence in this case 

all eigenvalues lie within the unit circle. As it is well known that equilibrium will be stable to small 

perturbations provided all roots of (19) lie within the unit circle in the complex plane and unstable if 

any one lies outside that circle. The upper boundary of the region of stability is thus obtained by 

finding the largest α for which the all roots of (19) lie within the unit circle. For all possible choice of 

ܽଵ, ܽଶ, . . . ,ܽ௡, the stability diagram will then typically involve a surface in (݊ + 1)−dimensional 

space, separating the stable region from the unstable one. The largest value ofߙanywhere on the 

surface is simply the maximumߙsubject to the constraints that the roots of (20) lie within the unit 

circle and thatܽଵ > 0,ܽଶ ≥ 0, . . . ,ܽ௡ ≥ 0,∑ܽ௜ = 1. 

A simple approximation 
For this simple model we takeܭଵ = 1,ܴ << 1	and݅ܭ	 = ܭ	 > 1,for݅ > 1 and݌௜ =  for all݅.To ݌	

describe this model we need only two state variables, since the age classes after the first may be 

lumped into the single descriptorݔଶ.The model thus takes the form  

′ଵݔ = (ܲߚ−)݌ݔ݁	ܲ	ොߙ
′ଶݔ = ଵݔ݌

ቋ                                                                                                                                                

(21) 

In which ܲ = ଵݔ +  ଶݔܭ

and 

ߙ = ොߙ ቂ1 + ܭ ቀ݌ + ௣మ

(ଵା௛)
+ ௣య

(ଵା௛)(ଵାோ௛)
+ ⋯ቁቃ

= ොߙ ቂ1 + ݌ܭ + ௄௣మ

(ଵା௛)
+ ቀ ௄௣య

(ଵା௛)(ଵାோ௛)
ቁ ቀ ଵ

(ଵି௣)
ቁቃ

      (22) 

The stability of the system is governed by the eigen value of the matrix 

ܯ = ቎
ଵି୪୬ఈ

ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ

௄(ଵି୪୬ ఈ)

ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ

݌ 0
቏                                                                                  

(23) 

Therefore the characteristic equation of ܯ is 

ଶߣ + (௟௡ఈିଵ)

൤ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ൨

ߣ + ௄௣(௟௡ఈିଵ)

൤ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ൨

= 0.				(24) 

Let us consider   
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ଵܣ =
−1)݌ (ߙ݈݊

ቂ1 + ݌ܭ + ௄௣మ

(ଵା௛)
+ ቀ ௄௣య

(ଵା௛)(ଵାோ௛)
ቁ ቀ ଵ

(ଵି௣)
ቁቃ
ଶܣ	݀݊ܽ	 =

1)݌ − +ℎ)(ߙ݈݊ (݌ܭ

ቂ1 + ݌ܭ + ௄௣మ

(ଵା௛)
+ ቀ ௄௣య

(ଵା௛)(ଵାோ௛)
ቁ ቀ ଵ

(ଵି௣)
ቁቃ

 

As lnߙ > 1, so both ܣଵ > 0 and ܣଶ > 0.  

Then lnߙ > 1	is the necessary and sufficient conditions for stability by Routh-Hurwitz criteria. 

MODEL WITH DELAYED REPRODUCTION 
For a more transparent demonstration, suppose that the example of previous section is 

modified so that  

ଵܭ = 	0, ଶܭ = 	1	 

and 

௜ܭ = ܭ > ݅	ݎ݋݂	1 ≥ 3                                                                                                                                                   

(25) 

For this case, the matrix ܯ of (23) becomes 

ܯ =

⎣
⎢
⎢
⎡0

ଵି୪୬ ఈ

௣൤ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ൨

௄(ଵି୪୬ఈ)

௣൤ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ൨

݌ 0 0
0 ݌ −ℎ ⎦

⎥
⎥
⎤
                                                                    

(26) 

Therefore the characteristic equation of ܯ is 

ଷߣ + ଶℎߣ + ௣(ଵି௟௡ఈ)

൤ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ൨

ߣ + ௣(ଵି௟௡ఈ)(௛ା௄௣)

൤ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ൨

= 0.			(27) 

Setting, 

ଵܣ = ℎ, ଶܣ = ௣(ଵି௟௡ఈ)

൤ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ൨

ଷܣ	݀݊ܽ	 = ௣(ଵି௟௡ఈ)(௛ା௄௣)

൤ଵା௄௣ା ಼೛మ
(భశ೓)ା൬

಼೛య
(భశ೓)(భశೃ೓)൰ቀ

భ
(భష೛)ቁ൨

  (28) 

Since ܣଵ = ℎ > 0,  so, by the application of the Routh-Hurwitz conditionthe stability region 

for the system is given by  

ฬܣଵ ଷܣ
1 ଶܣ

ฬ > 0, ݅. ݁. ଶܣଵܣ	 − ଷܣ > 0.			(29) 

From the condition of (30) we have 

lnߙ > ଵ
௄௣
ቂ1 + ݌ܭ + ௄௣మ

(ଵା௛)
+ ቀ ௄௣య

(ଵା௛)(ଵାோ௛)
ቁ ቀ ଵ

(ଵି௣)
ቁቃ+ 1      (30) 

NUMERICAL ILLUSTRATION 
Considering the annual mortality rate ݖ	 = 	ܭ and taking ݌	݈݊	−	 = 	10,ܴ = 	ℎ	ℎݐ݅ݓ	0.001 =

	0.5	&	0 we present stability region for (30) in Fig-1.  



Dipankar Sadhukhan, IJSRR 2019, 8(2), 416-426 

IJSRR, 8(2) April. – June., 2019                                                                                                     Page 424 
 

 
Figure-1: Stability diagram for h = 0.5& 0 

CONCLUSION 
It is interesting to note that the stability region in Fig-1 for the system without harvesting is 

larger than the corresponding region in Fig-1 for the system with harvesting. This observation agrees 

with the reality.When the harvesting is withdrawn from the system, the total population increases and 

hence the stability region with respect to the survival probability is more. Moreover the consideration 

of a system without harvesting is an unrealistic one, rather harvesting is a natural phenomenon in a 

biological species system like fish,etc. for which the stability region is presented in Fig-1.  

Here, the Ricker Stock-recruitment relation with age dependent harvesting make a good example of 

application of the proposed model in the fisheries in India and Bangladesh. Now-a-days, both 

Governments have banned the harvesting of hilsa at the juvenile stage of hilsa (jatka) and harvesting 

is permitted after a certain period of growth. During the initial period of growth, Government declare 

a certain area as reserved area (protected area) for a fish species, where harvesting is ban up-to a 

limited time span and after that harvesting is open for few month. In this way a heavy bio-mass of 

some species can maintain for long run. Hence, the proposed model can be used for some 

practicalcase studies in fish cultivation. 
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