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ABSTRACT 

A graph  ,G V E with V p is called integer cordial labeled graph if it has an injective 

map : ,...,
2 2
p pf V


    

or ,....,
2 2
p p            

as p is even or odd, which includes an edge labeling

 : 0,1f E  defined by   1  f e uv if     0f u f v  and 0 otherwise such that

   0 1 1 f fe e . In this paper we discuss Integer cordial labeling of triangular snake graph nT , 

double triangular snake graph nDT , triple triangular snake graph nTT  and alternate triangular snake 

graph nAT .  
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INTRODUCTION 
 In this paper, we consider finite, connected and undirected graph. A graph 

    ,G V G E G having set of vertices  V G and set of edges  .E G  For the standard notation, 

we refer Gross and Yellen.2 The concept of cordial labeling was introduced by I. Cahit3 in 1987. 

Definition-1.1: If the vertices or edges of graph are assigned values or label to certain conditions 

is known as graph labeling. 

Definition-1.2: A labeling of a graph G is said to be cordial labeling if    0 1 1f fv v   &

   0 1 1f fe e  , where  fv i and  fe i is the numbers of vertices and edges of graph G having 

labeled i respectively for 0,1.i A graph which admits cordial labeling is called cordial graph. 

 Different types of cordial labeling are introduced and explored by many researchers. For 

detailed survey on graph labeling we refer to a dynamic survey on graph labeling by Gallian.4 

Definition-1.3: A simple connected graph  ,G V E with .V p  Let : ,....,
2 2
p pf V


    

or

,....,
2 2
p p            

 as p is even or odd be an injective map, which includes an edge labeling 

 : 0,1f E  defined by   1  f e uv if     0f u f v  and 0 otherwise then f is said to be 

integer cordial if    0 1 1.f fe e   Where  fe i is the numbers of edges of graph G having label i 
for 0,1i  . A graph is called integer cordial graph if it admits an integer cordial labeling. Where 

   ,..., is an integer &t t x x x t   and      ,..., ,..., 0t t t t    . 

 
 T. Nicholas and P. Maya6 have proved following result: 

 (i) Complete graph Kn is not integer cordial graph, n > 3. 

(ii) Star graph K1,n is integer cordial. 

(iii) Helm graph Hn is integer cordial. 

(iv) Closed Helm graph CHn is integer cordial. 

(v) Complete bipartite graph ,n nK is integer cordial iff n is even. 

(vi) Graph , \n nK M is an integer cordial, where M is a perfect matching. 

Definition-1.4: A Triangular snake graph nT is obtained from a path 1 2, ,...., nu u u by joining iu and 

1iu   to a new vertex iv  for1 i n  , that is every edge of a path is replaced by a triangle. 

Definition-1.5: Double Triangular Snake graph nDT  consists of two Triangular snakes that have a 

common path. 
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Definition-1.6: Triple Triangular Snake graph nTT  consists of three Triangular snakes that have a 

common path. 

Definition-1.7: An Alternate Triangular Snake graph nAT  is obtained from a path 1 2, ,...., nu u u  by 

joining iu  and 1iu   alternatively  1,3,5,.....i  	to a new vertex iv . That is every alternate edge of a 

path is replaced by 3C . 

MAIN RESULTS  

Theorem-2.1: The Triangular snake graph nT  is integer cordial graph, 2.n   

Proof: Let 1 2, ,...., nu u u  be the n vertices and joining iu and 1iu  to a new vertex iv  for1 1i n  

.Hence total no. of vertices in 2 1nT p n    and number of edges in  3 1nT q n   . 

There are two cases for the value of n. 

Case-1: n  is even 

When n is even then p is odd. 

We define : ,....,
2 2
p pf V              

as follows: 

 
2 ; 1

2 2

;
2 2

    
   


i

n ni i
f u

n ni i n
 

 

; 1
2

0 ;
2

; 1
2

i

ni n i

nf v i

ni i n

   

 

   

 

Case-2: n  is odd 

When n is odd then p is odd. 

We define : ,....,
2 2
p pf V              

as follows: 

  1 ; 1
2


   i
nf u i i n  

 
1; 1

2
1; 1

2

i

ni n i
f v

ni i n

        

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Table – 1 “edge condition for Tn” 
Case No. Value of n Value of p Edge condition 

1 n is even p is odd    3 1

2
0

n
e f



 
 
 

and    3 1

2
1f

n
e



 
 
 

 

2 n is odd p is odd    3 1
0

2

n
e f


  and    3 1

1
2

n
e f


  

Thus, in each case we get    0 1 1.f fe e   

Hence Triangular snake graph nT is integer cordial. 

Example-2.2: An integer cordial labeling of 7T is shown in Figure-1. 

 
Figure – 1 “triangular snake graph with 7 vertices (T7)” 

Theorem-2.3: The Double Triangular snake graph nDT  is integer cordial graph, 2.n   

Proof: Let 1 2, ,...., nu u u  be the n vertices and joining iu and 1iu  to a new vertex iv and iv  for

1 1i n   . Total no. of vertices in 3 2nDT p n    and number of edges in  5 1nDT q n   . 

Case-1: n  is even 

When n is even then p is also even. 

We define : ,...,
2 2
p pf V


    

as follows: 

 
3 ; 1
2 2

2 ;
2 2

i

n ni i
f u

n ni i n

        


 

  ; 1 1if v i i n     

  ; 1 1if v i i n       

Case-2: n  is odd 

When n is odd then p is also an odd. 

We define : ,....,
2 2
p pf V              

as follows: 
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 

3 1 1; 1
2 2

10 ;
2

3 1;
2 2

i

n ni i

nf u i

n ni i n

        


 


    


 

  ; 1 1if v i i n     

  ; 1 1if v i i n       

Table – 2 “edge condition for DTn” 
Case No. Value of n Value of p Edge condition 

1 n is even p is even    5 1
0

2

n
e f



 
 
 

 and    5 1
1

2

n
e f



 
 
 

 

2 n is odd p is odd    5 1

2
0

n
e f


  and    5 1

2
1

n
e f


  

Thus, in each case we get    0 1 1.f fe e   

Hence, Double Triangular snake graph nDT is integer cordial. 

Example-2.4: An integer cordial labeling of 6DT  is shown in Figure-2. 

 
Figure – 2 “double triangular snake graph with 6 vertices (DT6)” 

Theorem-2.5: The Triple Triangular snake graph nTT  is integer cordial graph, 2.n   

Proof: Let 1 2, ,...., nu u u  be the n vertices and joining iu and 1iu  to a new vertex ,i iv v  and iv  for

1 1i n   . Total no. of vertices in 4 3nTT p n    and number of edges in  7 1nTT q n   . 

Case-1: n  is even. 

When n is even then p is odd. 
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We define : ,....,
2 2
p pf V              

as follows: 

 
3 ; 1
2 2

2 ;
2 2

i

n ni i
f u

n ni i n

        


 

  ; 1 1if v i i n     

 

 

 

2 1 ; 1
2

0 ;
2

1 ; 1
2

i

ni n i

nf v i

ni n i n

    

  

     

 

  ; 1 1if v i i n       

Case-2: n  is odd 

When n is odd then p is also an odd. 

We define : ,....,
2 2
p pf V              

as follows: 

 

3 1 1; 1
2 2

10 ;
2

3 1;
2 2

i

n ni i

nf u i

n ni i n

        


 


    


 

  ; 1 1if v i i n     

 
 

 

12 1 ; 1
2

11 ; 1
2

i

ni n i
f v

ni n i n

            


 

  ; 1 1if v i i n       

Table – 3 “edge condition for TTn” 
Case No. Value of n Value of p Edge condition 

1 n is even p is odd    7 1
0

2

n
e f



 
 
 

 and    7 1
1

2

n
e f



 
 
 

 

2 n is odd p is odd    7 1

2
0

n
e f


  and    7 1

2
1

n
e f


  
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Thus, in each case we get    0 1 1.f fe e   

Hence, Triple Triangular snake graph nTT is integer cordial. 

Example-2.6: An integer cordial labeling of 6TT  is shown in Figure-3. 

 
Figure – 3 “triple triangular snake graph with 6 vertices (TT6)” 

Theorem-2.7: The Alternate Triangular snake graph nAT  is integer cordial graph, 2.n   

Proof: Let 1 2, ,...., nu u u  be the n vertices and joining iu and 1iu   alternatively  1,3,5,.....i  	to a new 

vertex iv for1 1i n   . 

There are different four cases related to the value of n and p. 

Case-1: If n is even and p is odd. 

We define : ,....,
2 2
p pf V              

as follows: 

 
2 ; 1

2 2

;
2 2

i

n ni i
f u

n ni i n

    
   


 

 

3 2 2; 1
4 4

20 ;
4

2 2;
4 4 2

i

n ni i

nf v i

n n ni i

    


 


    

 

Case-2: If n and p are even. 
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We define : ,...,
2 2
p pf V


    

as follows: 

 
2 ; 1

2 2

;
2 2

i

n ni i
f u

n ni i n

    
   


 

 
3 4 ; 1

4 4

;
4 4 2

i

n ni i
f v

n n ni i

    
   


 

Case-3: If p and n both are odd. 

We define : ,....,
2 2
p pf V              

as follows: 

  1 ; 1
2i

nf u i i n
     

 
3 1 1; 1

4 4
1 1 1;

4 4 2

i

n ni i
f v

n n ni i

           


 

Case-4: If p is even and n is odd. 

We define : ,...,
2 2
p pf V


    

as follows: 

 
1 1; 1

2 2
1 1;

2 2

i

n ni i
f u

n ni i n

          


 

 
 3 1 1; 1

4 4
1 1;

4 4

i

n ni i
f v

n ni i n

 
   

    

 

Table – 4 “edge condition for ATn” 
Case No. Value of n Value of p Edge condition 

1 n is even p is odd  0 1fe n  and  1fe n  

2 n is even p is even  0 1fe n  and  1fe n  

3 n is odd p is odd  0 1fe n  and  1 1fe n   

4 n is odd p is even  0 1fe n  and  1 1fe n   
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Thus, in each case we get    0 1 1.f fe e   

Hence, Alternate Triangular snake graph nAT is integer cordial. 

Example-2.8: An integer cordial labeling of 6AT  is shown in Figure-4. 

 
Figure - 4 “alternate triangular snake graph with 6 vertices (AT6)” 

CONCLUSION 
 In this paper we have proved that triangular snake graph, double triangular snake graph, triple 

triangular snake graph and alternate triangular snake graph admits integer cordial labeling. 
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