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1. INTRODUCTION  
The development of  “abstract convexity” has emanated from different sources in different ways 

; the first type of development basically banked on generalization of particular problems such as 

separation of convex ݏݐ݁ݏ 	ଵ  , ݁ݕݐ݈݅ܽ݉݁ݎݐݔ	ଶ	,ଷ  or continuous ݊݋݅ݐ݈ܿ݁݁ݏ	ସ . The second type of 

development lay before the reader such axiomatizations , which in every case of design , express 

particular point of view of convexity . With the view point of generalized topology which enters into 

convexity via the closure or hull operator , Schmidt and Hammer, , introduced some axioms to 

explain abstract convexity . The arising of convexity from algebraic operations and the related 

property of domain finiteness receive attentions in Birchoff and Frink , Schmidt, Hammer . 

The axiomatizations as proposed by M.L.J. Van De Vel in his paper Theory of Convex 

 . ହ  will be followed Through out in this paper	݁ݎݑݐܿݑݎݐܵ

The author has discussed in “ Topology and Convexity on the same ݐ݁ݏ	଺		” and introduced 

the compatibility of the topology with a convexity on the same underlying set . At the very early 

stage of this paper we have set aside this concept of compatibility and started just with a triplet  

(	ܺ	, ߬	,ࣝ	) and call it convex topological space only to bring back “compatibility” in another way 

subsequently . With this compatibility , Van De Vel has called the triplet  (	ܺ	, ߬	,ࣝ	)  a topological 

convex structure . 

In this paper , Art. 2 deals with some early definitions , results and in Art. 3 we have 

discussed mainly inter relation among different types of continuous functions . 

2.  PREREQUISITES :      

Definition ૛.૚	૟ : Let  ܺ  be a non empty set . A family  ࣝ  of subsets of the set  ܺ  is  called a 

convexity on  ܺ  if  

1. ߶	,ܺ	 ∈ 	ࣝ  

2. ࣝ  is stable for intersection , i.e.  if   ࣞ ⊆ ࣝ  is non empty , then ∩ ࣞ ∈ ࣝ    

3. ࣝ  is stable for nested unions , i.e. if  ࣞ ⊆ ࣝ  is non empty and totally ordered by set inclusion 

, then   ∪ ࣞ ∈ ࣝ  . 

The pair  (	ܺ	,ࣝ	)  is called a convex structure  . The members of  ࣝ  are called convex sets 

and their complements are called concave sets . 

Definition ૛.૛	૟  :   Let  ࣝ  be a convexity on set  ܺ . Let  ܣ ⊆ ܺ  . The convex hull of        ܣ  is 

denoted by  ܿ(ܣ)݋  and defined by  ܿ(ܣ)݋ =∩ ܥ} ∶ ܣ ⊆ ܥ ∈ ࣝ} .  

Note ૛.૜	૟  : Let  (	ܺ	,ࣝ	)  be a convex structure and let  ܻ  be a subset of  ܺ . The family of sets  

ࣝ௒ = ܥ} ∩ ܻ ∶ ܥ ∈ ࣝ}  is a convexity on  ܻ; called the relative convexity of  ܻ.      

Note ૛.૝	૟  : The hull operator  ܿ݋௒  of a subspace  (	ܻ	,ࣝ௒	)  satisfy the following : 
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ܣ∀                                ⊆ ܻ ∶ (ܣ)௒݋ܿ	 = (ܣ)݋ܿ ∩ ܻ . 

Definition ૛.૞	૟:  Let  (	ܺ	, ࣝ	)  be a convex structure and let  ߬  be a topology on  ܺ . Then  ߬  is 

said to be compatible with the convex structure   (	ܺ	,ࣝ	)   if all polytopes of   ࣝ  are closed in  ߬   

where polytopes means convex hull of a finite set . Also the triplet   (	ܺ	, ߬	,ࣝ	)  is then called 

topological convex structure . 

Note ૛.૟	૟  : Let  (	ܺ	, ߬	,ࣝ	)  be a  topological convex structure . Then collection of all closed sets in  

(ܺ	, ߬	)   are subset of  ࣝ .  

Definition ૛.ૠ	ૠ  : Let  (ܺ	, ߬	)  be a topological space and let  ࣝ  be a convexity on  ܺ . Then the 

triplet   (	ܺ	, ߬	,ࣝ	) is called a convex topological space  ( CTS in short ) .  

Definition ૛.ૡ	ૡ  :  Let  (	ܺ	, ߬	,ࣝ	) be a convex topological space . A set  ܲ ⊆ ܺ  is said to be C- 

regular open  if  ܲ =  . ൯(	ܲ	)	݋ܿ	൫ݐ݊݅

Result ૛.ૢ	ૡ  :  Let  ܣ  be a subset of a convex topological space  (	ܺ	, ߬	,ࣝ	) . Then  ݅݊ݐ൫	ܿ)݋	(ܣ൯  is 

a  C- regular open set .  

Note ૛.૚૙	ૡ  :  In a convex topological space   (	ܺ	, ߬	,ࣝ	)  for any  subset  ܣ  of  ܺ  , the set  

 of  ܺ   is called  C- regular closed set if its  ܤ  ൯  is a C- regular open set . Also  a subset(	ܣ	)	݋ܿ	൫	ݐ݊݅

complement is  C- regular open set. 

Definition ૛.૚૚	ૡ  : [ 8 ]  Let  (	ܺ	, ߬	,ࣝ	)  be a convex topological space . Let  ܵ  be a subset of  ܺ  

and  ݔ ∈ ܺ . 

(a) ݔ  is called  ߜ⋆ − ࣝ cluster point of  ܵ  if  ܵ ∩ ൯(	ܷ	)	݋ܿ	൫ݐ݊݅ ≠ ∅ , for each open nbd.  ܷ  of  

  . ݔ

(b)  The family of all  ߜ⋆ − ࣝ cluster points of  ܵ  is called the  ߜ⋆ − ࣝ closure of  ܵ  and  is 

denoted by   [ܵ]ఋ⋆ .  

(c)  A subset  ܵ of  ܺ   is called  ߜ⋆ − ࣝ closed if    [ܵ]ఋ⋆ = ܵ .  

The complement of a  ߜ⋆ − ࣝ closed set is said to be a  ߜ⋆ − ࣝ open set .      

Definition ૛.૚૛	ૡ  :  Let  (	ܺ	, ߬	,ࣝଵ	) and   (	ܻ	,  )  be two convex topological spaces. A	ଶࣝ,	ߪ

function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	, ⋆ߜ   )  is said to be	ଶࣝ,	ߪ − ࣝ continuous if for each  ݔ ∈ ܺ  and 

each open nbd.  ܸ  of  ݂(ݔ) , there exists an open nbd.  ܷ  of  ݔ  such that  ݂ ቀ݅݊ݐ൫ܿ݋(ܷ)൯ቁ 	⊆

    . ൯(	ܸ	)	݋ܿ	൫ݐ݊݅

Result ૛.૚૜	ૡ  :  A  function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	, ⋆ߜ  )  is	ଶࣝ,	ߪ − ࣝ continuous iff  for each  

ݔ ∈ ܺ  and each  each  C- regular open set  ܸ  containing  ݂(	ݔ) , there exists a C- regular open set  ܷ  

containing  ݔ  such that  ݂(	ܷ) ⊆ ܸ . 

 



Bijoy Samanta, IJSRR 2019, 8(1), 2921-2928 

IJSRR, 8(1) Jan. – Mar., 2019                                                                                                         Page 2924 
 
 

3.  COMPARISON OF DIFFERENT TYPES OF CONTINUOUS FUNCTIONS :   
Definition 3.1 :  Let (	ܺ	, ߬	,ࣝଵ	) and  (	ܻ	,   )  be two convex topological spaces . A function	ଶࣝ,	ߪ

݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	, ⋆ߠ )  is said to be strongly	ଶࣝ,	ߪ − ࣝ continuous ,                   ߠ⋆ − ࣝ 

continuous , regular ࣝ- continuous    if for each  ݔ ∈ ܺ  and each open nbd.  ܸ  of  ݂(ݔ) , there exists 

an open nbd.  ܷ  of  ݔ  such that    ݂൫	ܿ݋	(	ܷ	)൯ ⊆ ܸ   ,  ݂൫	ܿ݋	(	ܷ	)൯ ⊆ ,				(	ܸ	)	݋ܿ ݂(ܷ) ⊆

 . ൯   respectively(	ܸ	)	݋ܿ	൫ݐ݊݅

Remark 3.2 :  For any convex topological space we have  ܲ ⊆  This shows that  strongly . (	ܲ	)	݋ܿ

⋆ߠ − ࣝ continuous  ⇒  ߠ⋆ − ࣝ continuous  .  

   The following example shows that the converse of the above implication may not be true in general  

Example 3.3 :  Let us consider the function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܺ	, ܺ   )  where	ଶࣝ,	ߪ =

{	ܽ	, ܾ	, ܿ	}  ,  ߬ = {	∅	,ܺ	}  ,  ࣝଵ = ߪ  ,  {	ܺ,	∅	} = ൛	∅	, ܺ	, {	ܽ}ൟ  ,  ࣝଶ = {	∅	,ܺ	}  and  ݂  is the 

identity mapping  ܫ௑  on  ܺ .  

Here  ݂  is  ߠ⋆ − ࣝ continuous on  ܺ. Also for  ܽ ∈ ܺ if we consider  the open nbd.  {	ܽ	}  of  

݂(	ܽ) , then there is no  ܷ ∈ ߬  such that  ݂൫	ܿ݋(	ܷ)൯ ⊆ {	ܽ} . So  ݂  is not  strongly ߠ⋆ − ࣝ 

continuous on  ܺ . 

Note 3.4 : We now show that  ߠ⋆ − ࣝ continuous and regular ࣝ- continuous are two independent 

concepts which follows from the next two examples . 

Example 3.5 :  Let us consider the function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܺ	, ܺ   )  where	ଶࣝ,	ߪ =

{	ܽ	, ܾ	, ܿ	}  ,  ߬ = ൛∅	,ܺ	, {	ܽ	, ܾ	}ൟ	  ,  ࣝଵ = ൛∅	,ܺ	, {	ܽ	, ܾ	}ൟ  ,  ߪ = ൛	∅	, ܺ	, {	ܽ}ൟ  ,  ࣝଶ =

൛∅	,ܺ	, {	ܽ	,ܾ	}ൟ  and  ݂  is the identity mapping  ܫ௑  on  ܺ . 

  Here  ݂  is ߠ⋆ − ࣝ continuous but not regular ࣝ- continuous on  . 

Example 3.6 :  Let us consider the function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܺ	, ܺ   )  where	ଶࣝ,	ߪ =

{	ܽ	, ܾ	, ܿ	}  ,  ߬ = ൛∅	,ܺ	, {	ܽ}		, {		ܾ	}ൟ	  ,  ࣝଵ = ߪ  ,  {	ܺ,	∅} = ൛	∅	, ܺ	, {	ܽ}ൟ  ,  ࣝଶ = ൛∅	,ܺ	, {	ܽ	}ൟ  and  

݂  is the identity mapping  ܫ௑  on  ܺ . 

  Here  ݂  is regular ࣝ- continuous but not  ߠ⋆ − ࣝ continuous on  . 

Theorem 3.7 :  Let a  function  ݂ ∶ 	(	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	, ⋆ߠ  )  be	ଶࣝ,	ߪ − ࣝ continuous and  open . 

Then  ݂  is  regular ࣝ- continuous function .  

Proof :  Let  ݔ ∈ ܺ  and  ܸ  be an open nbd. of  ݂(ݔ) . Since  ݂  is  ߠ⋆ − ࣝ continuous , there exists an 

open nbd.  ܷ  of  ݔ  such that   ݂൫	ܿ݋	(	ܷ	)൯ ⊆ (ܷ	)݂  Thus . (	ܸ	)	݋ܿ ⊆ ݂ ቀܿ݋൫	(	ܷ)൯ቁ ⊆  . (ܸ	)݋ܿ

Now ܷ is an open set and  ݂  is open mapping . Thus  ݂(	ܷ)  is an open set in  ܻ  which is contained 

in  ܿ݋(	ܸ) . So   ݂(	ܷ) ⊆  . ൯ . Consequently  ݂  is  regular ࣝ- continuous function(ܸ	)݋ܿ	൫ݐ݊݅
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Theorem 3.8 :  (a)   If a function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	, ⋆ߠ )  is strongly	ଶࣝ,	ߪ − ࣝ continuous 

and  ݃ ∶ (	ܻ	, (	ଶࣝ,	ߪ → ݃  is regular ࣝ- continuous , then  (ଷࣝ,ߛ,	ܼ) ∘ ݂ ∶ (	ܺ	, ߬	,ࣝଵ	) →  (ଷࣝ,ߛ,	ܼ)

is  ߜ⋆ − ࣝ continuous . 

(b)  The following implications hold : 

strongly ߠ⋆ − ࣝ continuous  ⇒ ߜ⋆ − ࣝ continuous   ⇒  regular ࣝ- continuous  . 

Proof :  (a)   Let  ݔ ∈ ܺ  and  ܹ  be any open set containing  (݃ ∘  -ࣝ Since  ݃  is regular . (ݔ)(݂

continuous , there exists an open nbd.  ܸ   of  ݂(ݔ)  in  ܻ  such that  ݃(ܸ) ⊆  ൯ . Again(	ܹ	)	݋ܿ	൫ݐ݊݅

since  ݂  is strongly ߠ⋆ − ࣝ continuous , there exists an open nbd.  ܷ  of  ݔ  in  ܺ  such that  

݂൫	ܿ݋	(	ܷ	)൯ ⊆ ܸ . Now  ݂ ቀ	݅݊ݐ൫	ܿ݋(	ܷ	)൯ቁ ⊆ ݂൫	ܿ݋(	ܷ	)൯ ⊆ ܸ ⇒ 

݃ ቀ݂ ቀ	݅݊ݐ൫	ܿ݋(	ܷ	)൯ቁ ⊆ቁ ݃ ቀ݂൫	ܿ݋(	ܷ	)൯ቁ ⊆ ݃(ܸ) ⊆ ൯(	ܹ	)	݋ܿ	൫ݐ݊݅ 	⇒		 

(݃ ∘ ݂) ቀ݅݊ݐ൫	ܿ݋(	ܷ	)൯ቁ ⊆ ݃  ൯. This shows that(	ܹ	)	݋ܿ	൫ݐ݊݅	 ∘ ݂ is  ߜ⋆ − ࣝ continuous .  

(b)  Let ݂  be strongly ߠ⋆ − ࣝ continuous . Also let  ݔ ∈ ܺ  and  ܸ be any open nbd. of  ݂(ݔ) .  Then 

there exists an open nbd.  ܷ  of  ݔ  in ܺ  such that  ݂൫	ܿ݋(	ܷ	)൯ ⊆ ܸ ⇒ 	݂ ቀ	݅݊ݐ൫	ܿ݋(	ܷ	)൯ቁ ⊆

݂൫	ܿ݋(	ܷ)൯ ⊆ ܸ = (ܸ)ݐ݊݅ ⊆ ⋆ߜ ൯ . Hence  ݂  is(ܸ	)݋ܿ	൫ݐ݊݅ − ࣝ continuous .   

  Again let  ݂  be  ߜ⋆ − ࣝ continuous . Also let  ݔ ∈ ܺ  and  ܸ be any open nbd. of  ݂(ݔ)  in  ܻ. Then 

there exists an open nbd.  ܷ  of  ݔ  in  ܺ  such that  ݂ ቀ	݅݊ݐ൫	ܿ݋(	ܷ	)൯ቁ ⊆ ܹ  ൯ . Let(ܸ	)݋ܿ	൫ݐ݊݅ =

(ܹ	)݂  such that  ݔ  ൯ . Then  ܹ  is open nbd. of(ܷ	)݋ܿ	൫ݐ݊݅	 ⊆  -ࣝ ൯  . Thus ݂  is regular(ܸ	)݋ܿ	൫ݐ݊݅

continuous . 

Note 3.9 :  The following examples show that none of these implications in the above theorem is 

reversible .  

Example 3.10 :  Let us consider the function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܺ	, ܺ   )  where	ଶࣝ,	ߪ = {	ܽ	, ܾ	}  

,  ߬ = ൛∅	,ܺ	,			{	ܽ}ൟ		  ,  ࣝଵ = ߪ  ,  {	ܺ,	∅} = ൛	∅	, ܺ	, {	ܾ}ൟ  ,  ࣝଶ = {∅	,ܺ	}  and  ݂  is the identity 

mapping  ܫ௑  on  ܺ . 

  Here ݂  is  ߜ⋆ − ࣝ continuous but not strongly ߠ⋆ − ࣝ continuous on  . 

Example 3.11 :  Let us consider the function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܺ	, ܺ   )  where	ଶࣝ,	ߪ =

{	ܽ	, ܾ	, ܿ	}  ,  ߬ = ൛∅	,ܺ	,			{	ܽ}	, {	ܾ}ൟ			  ,  ࣝଵ = ߪ  ,  {	ܺ,	∅} = ൛	∅	, ܺ	, {	ܽ}ൟ  ,  ࣝଶ = ൛∅	,ܺ	, {	ܽ}ൟ	  

and  ݂  is the identity mapping  ܫ௑  on  ܺ . 

  Here  ݂  is regular ࣝ- continuous but not   ߜ⋆ − ࣝ continuous on  ܺ . 

Definition 3.12 :  A convex topological space  (	ܺ	, ߬	,ࣝ	)  is said to be  an  semi ࣝ- regular  space if 

for each  ݔ ∈ ܺ  and each open nbd.  ܸ  of  ݔ  there exists an open nbd.  ܷ  of  ݔ  such that  ݔ ∈ ܷ ⊆

൯(ܷ	)݋ܿ	൫ݐ݊݅ ⊆ ܸ .   
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Theorem 3.13 :  For a function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	,  : )  the following properties are true	ଶࣝ,	ߪ

(a) If  ܻ  is an semi ࣝ- regular space and  ݂  is  ߜ⋆ − ࣝ continuous , then ݂  is continuous . 

(b) If  ܺ  is an  semi ࣝ- regular space and  ݂  is regular ࣝ- continuous , then  ݂  is  ߜ⋆ − ࣝ 

continuous .   

Proof :  (a)  Let  ܻ  be an semi ࣝ- regular space and ݔ ∈ ܺ . Then for each open nbd.  ܸ  of  ݂(ݔ) , 

there exists an open nbd.  ܹ  of  ݂(ݔ)  such that  ݂(ݔ) ∈ ܹ ⊆ ൯(ܹ	)݋ܿ	൫ݐ݊݅ ⊆ ܸ . Since   ݂  is  

⋆ߜ − ࣝ continuous , there exists an open nbd.  ܷ  of  ݔ  such that  ݂ ቀ	݅݊ݐ൫	ܿ݋(	ܷ)൯ቁ ⊆  ൯(ܹ	)݋ܿ	൫ݐ݊݅

. Since ܷ  is an open set , ݂(ܷ) = ݂൫݅݊ݐ(ܷ)൯ ⊆ ݂ ቀ	݅݊ݐ൫	ܿ݋(	ܷ)൯ቁ ⊆ ൯(ܹ	)݋ܿ	൫ݐ݊݅ ⊆ ܸ			݅. ݁.,

݂(ܷ) ⊆ ܸ . Hence  ݂  is continuous .                       

 (b)   Let  ݔ ∈ ܺ  and ܸ  be an open nbd. of  ݂(ݔ) . Since  ݂  is  regular ࣝ- continuous , there 

exists an open nbd.  ܷ  of  ݔ  such that  ݂(ܷ) ⊆  ൯ . Again since  ܺ  is an  semi ࣝ- regular(	ܸ	)݋ܿ	൫ݐ݊݅

space there exists an open nbd.  ܹ  of  ݔ  such that  ݅݊ݐ൫	ܿ݋(	ܹ)൯ ⊆ ܷ . Thus  ݂ ቀ	݅݊ݐ൫	ܿ݋(	ܹ)൯ቁ ⊆

݂(ܷ) ⊆ ⋆ߜ  ൯ . Hence  ݂  is(	ܸ	)݋ܿ	൫ݐ݊݅ − ࣝ continuous . 

Corollary 3.14 :   If  (	ܺ	, ߬	,ࣝଵ	)   and  (	ܻ	,  )   are semi ࣝ- regular  spaces , then the concepts	ଶࣝ,	ߪ

on a function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	, ⋆ߜ  ,  (	ଶࣝ,	ߪ − ࣝ continuity , continuity , regular ࣝ- 

continuity are equivalent . 

Definition 3.15 :  A  CTS  (	ܺ	, ߬	,ࣝ	) is said to be an almost ࣝ- regular if for each  ࣝ- regular closed 

set  ܨ  and each  ݔ ∉ ݔ  there exist disjoint open sets  ܷ  and  ܸ  such that ,  ܨ ∈ ܷ  and  ܨ ⊆ ܸ .  

Theorem 3.16 :Let  (	ܺ	, ߬	,ࣝ	) be an almost ࣝ- regular space where  ߬  is compatible with ࣝ . Then 

for each ݔ ∈ ܺ  and each ࣝ- regular open nbd.  ܸ  of  ݔ  , there exists a ࣝ- regular open nbd.  W  of  ݔ  

such that  ݔ ∈ ܹ ⊆ (ܹ	)݋ܿ ⊆ ܸ  . 

Proof :  Let   ݔ ∈ ܺ   and  ܸ  be a ࣝ- regular open set containing  ݔ . Then  ݔ ∉ ܺ ∖ ܸ  and  ܺ ∖ ܸ  is 

a ࣝ- regular closed set . Thus there exist disjoint open sets  ଵܷ		, ଶܷ such that  ݔ ∈ ଵܷ  and  ܺ ∖ ܸ ⊆

ଶܷ . Now  ଵܷ⋂ ଶܷ = ∅  ⇒ ݈ܿ(	 ଵܷ)⋂ ଶܷ = 	)݋ܿ ⇒   ∅ ଵܷ)⋂ ଶܷ = ∅  [  Since  ߬  is compatible with ࣝ  ]   

	)݋ܿ  ⇒ ଵܷ) ⊆ ܺ ∖ ଶܷ 		⊆ 	)݋ܿ	൫ݐ݊݅  ⇒  ܸ ଵܷ)൯ ⊆ ܸ . Let  ܹ = 	)݋ܿ	൫ݐ݊݅ ଵܷ)൯ . Then  ݔ ∈ ܹ  and  ܹ  

is a ࣝ- regular open set . Also  ܹ = 	)݋ܿ	൫ݐ݊݅ ଵܷ)൯ ⊆ 	)݋ܿ ଵܷ) (ܹ	)݋ܿ ⇒		 ⊆ 	)݋ܿ ଵܷ) ⊆ V			 ⇒ 		x ∈

W ⊆ co(	W) ⊆ V .       

Theorem 3.17 :   For a function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	,   : )  the following hold	ଶࣝ,	ߪ

(1)  If  ܻ  is almost ࣝ- regular space where  ߪ  is compatible with  ࣝଶ	  and ݂  is  ߠ⋆ − ࣝ 

continuous , then  ݂  is  ߜ⋆ − ࣝ continuous .     

(2)  If  ܺ is  almost ࣝ- regular space where  ߬  is compatible with  ࣝଵ , ܻ is semi ࣝ- regular space 

and  ݂  is  ߜ⋆ − ࣝ continuous , then  ݂  is  strongly ߠ⋆ − ࣝ continuous . 
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Proof :  1)  Let  ݔ ∈ ܺ  and  ܸ  be a ࣝ- regular open nbd. of  ݂(	ݔ) . Then  ܻ  being  almost ࣝ- regular 

space , there exist a  ࣝ- regular open nbd.  ܷ  of  ݂(	ݔ)  such that  ݂(	ݔ) ∈ ܷ ⊆ (ܷ	)݋ܿ ⊆ ܸ . Since  ݂  

is  ߠ⋆ − ࣝ continuous , there exists an open nbd.  ܹ  of ݔ  such that ݂൫	ܿ݋(	ܹ)൯ ⊆  Thus . (ܷ	)݋ܿ

ቀ	݅݊ݐ൫	ܿ݋(	ܹ)൯ቁ ⊆ ݂൫	ܿ݋(	ܹ)൯ ⊆ (ܷ	)݋ܿ ⊆ ܸ . Hence  ݂  is  ߜ⋆ − ࣝ continuous .     

2)   Let  ݔ ∈ ܺ  and  ܸ  be an open nbd. of  ݂(ݔ)	 . Since  ܻ is semi ࣝ- regular space , there exists an 

open nbd.  ܷ  of  ݂(	ݔ)  such that  ݂(	ݔ) ∈ ܷ ⊆ ൯(ܷ	)݋ܿ	൫ݐ݊݅ ⊆ ܸ . Again by the  ߜ⋆ − ࣝ continuity 

of  ݂  , there exists an open nbd.  ܹ  of ݔ  such that  ݂ ቀ	݅݊ݐ൫	ܿ݋(	ܹ)൯ቁ ⊆  ൯ . Now(ܷ	)݋ܿ	൫ݐ݊݅

 ൯  is a ࣝ- regular open set in  ܺ  which is  almost ࣝ- regular . So there is ࣝ- regular open(ܹ	)݋ܿ	൫ݐ݊݅

nbd.  ܲ  of  ݔ  such that  ݔ ∈ ܲ ⊆ (ܲ	)݋ܿ ⊆ ൯(ܲ	)݋ܿ	൯ .This implies that  ݂൫(ܹ	)݋ܿ	൫ݐ݊݅ ⊆

݂ ቀ	݅݊ݐ൫	ܿ݋(	ܹ)൯ቁ ⊆ ൯(ܷ	)݋ܿ	൫ݐ݊݅ ⊆ ܸ . Thus  ݂  is  strongly ߠ⋆ − ࣝ continuous .          

Definition 3.18 :  A function  ݂ ∶ 	 (	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	,   )  is called  ࣝ- regular open if for each	ଶࣝ,	ߪ

ࣝ- regular open set  ܷ  of  ܺ ,  ݂(	ܷ)  is open in  ܻ . 

Theorem 3.19 :  Let a  function  ݂ ∶ 	(	ܺ	, ߬	,ࣝଵ	) 	→ (	ܻ	, ⋆ߠ  )  be	ଶࣝ,	ߪ − ࣝ continuous and  ࣝ- 

regular open . Then  ݂  is  ߜ⋆ − ࣝ continuous function . 

Proof :  Let  ݔ ∈ ܺ  and  ܸ  be an open nbd. of  ݂(ݔ) . Since  ݂  is  ߠ⋆ − ࣝ continuous , there exists an 

open nbd.  ܷ  of  ݔ  such that   ݂൫	ܿ݋	(	ܷ	)൯ ⊆ ݂  Thus . (	ܸ	)	݋ܿ ቀ	݅݊ݐ൫	ܿ݋(	ܷ)൯ቁ ⊆ ݂ ቀܿ݋൫	(	ܷ)൯ቁ ⊆

  ൯ቁ  is a ࣝ- regular open set and  ݂  is  ࣝ- regular open mapping . Thus(ܷ	)݋ܿ	൫ݐ݊݅	Now  ቀ . (ܸ	)݋ܿ

݂ ቀ	݅݊ݐ൫	ܿ݋(	ܷ)൯ቁ  is an open set in  ܻ  which is contained in  ܿ݋(	ܸ) . So   ݂ ቀ	݅݊ݐ൫	ܿ݋(	ܷ)൯ቁ ⊆

⋆ߜ  ൯ . Consequently  ݂  is(ܸ	)݋ܿ	൫ݐ݊݅ − ࣝ continuous function . 
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