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ABSTRACT

The correspondence principle of linear viscoelasticity is used to derive the displacement
fields of an elastic half-space overlying a viscoelastic half-space caused by a dipole source, assuming
the medium to be elastic in dilatation and Kelvin, Maxwell or SLS (Standard linear solid) type
viscoelastic in distortion. The results are valid for arbitrary values of the relaxation time and a
change in the rigidity of the two half-spaces. The variation of the viscoelastic displacements with the
epicentral distance as well as with the different relaxation time are studied and shown graphically.

KEYWORDS: Viscoelastic, Dipole, Maxwell, Kelvin model.

*Corresponding author

Nishu Verma

Department of Mathematics,

Guru Jambheshwar University of Science and Technology
Hisar-125001, India.

Email: nishu.gju2016@gmail.com

IISRR, 8(1) Jan. — Mar., 2019 Page 2836



Verma N. et al., IJSRR 2019, 8(1), 2836-2846

INTRODUCTION

The Papkovich-Neuber displacement potential functions for an arbitrary point force acting in
an infinite medium consisting of two welded elastic half-spaces obtained by Rongved'. Heaton and
Heaton? obtained the deformation field produced by point force and force couples embedded in two
Poissonian half-space by using Papkovich-Neuber displacement potential functions. Rosenman and
Singh® applied the correspondence principle of linear viscoelasticity to derive the quasi-static
displacement field in a Maxwellian viscoelastic half-space. The correspondence principle of linear
viscoelasticity has been extensively used by many authors (e.g.*®) to calculate the quasi-static
deformation of a viscoelastic half-space by a point or extended sources. The Galerkin vector
approach has been used by Singh and Singh? to obtain the displacement field due to various seismic
sources in a homogeneous, isotropic, perfectly elastic half-space and then the correspondence
principle of linear viscoelasticity is used to obtain the quasi-static displacement, stains, and stresses.
Singh and Singh'® gave a simple procedure to obtain the quasi-static field in a viscoelastic half-
space. The displacement and stress fields due to a point displacement dislocation located at an
arbitrary point of a two- phase medium consisting of two homogeneous, isotropic, perfectly elastic
half-spaces in welded contact have been obtained by Kumari et al."". Four axially symmetric sources,
namely, a vertical force, a vertical dipole, a tensile dislocation on a horizontal fault and a
compensated linear vector dipole (CLVD) in an elastic half-space were considered by Singh et al.*?
to model the ground deformation in volcanic areas. The displacement and strain fields due to these
four sources are compared with the corresponding fields due to a center of dilatation. The
deformation fields due to five axially symmetric sources, namely, a vertical force, a vertical dipole, a
center of dilatation, a tensile dislocation on a horizontal fault and a compensated linear vector dipole
(CLVD) in two welded elastic half-spaces obtained by Singh et al.*%.

Some materials usually have elastic as well as viscous property, therefore a theoretical study
of viscoelasticity is an important subject in applied mechanics. A Viscoelastic medium has been used
by many authors in various branches of science and technology particularly in geophysics and
seismology.

In the present paper, we have obtained the displacement components due to a dipole in a
homogeneous, isotropic, elastic half-space overlying homogeneous, isotropic, viscoelastic half-

space.
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THEORY

Consider a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-
space (z >0, Medium-1) with the elastic constants 4;,uq,017 in welded contact with other
homogeneous, isotropic, viscoelastic half-space (z<0, Medium-2) with the elastic

constants A,, uy ,075.

Let the point source of unit magnitude F, is located at the point (0, 0, ¢) in Medium-1.

.
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Fig. 1. Geometry of a point source in two welded half-spaces

The solution will be given in terms of the Papkovich- Neuber displacement potentials which
derive the displacement through the relation
2uuj = (k +1) @ — (X Py + V), 1)
Where X;j = (X, Y, z) is the position vector, u- shear modulus,x =3—-4c where o is the Poisson’s

Ratio.
In case of nobody forces, the potentials ®; and ¥ must be harmonic:
V2o, =vio, =V?0, =V2¥ =0.
The Papkovich- Neuber displacement potentials for a dipole in the x, y, and z-directions have

been used by Kumari et al.™*

in equation (1) to obtain the elastic solutions in an elastic half-space
overlying elastic half-space.

The viscoelastic solution is obtained from the elastic solution (Kumari et al.'*) by first
applying the correspondence principle of linear viscoelasticity and then inverting the Laplace

transformed solution. These solutions are to be obtained by considering homogenous, isotropic,
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elastic half-space overlying the homogenous, isotropic, viscoelastic half-space.  For this, we
considerx, =, 9 = u, and xp and g4 as constants.

Following are the various combinations of elastic moduli xand x which occur in the
expressions of elastic displacements:

1 1 1 U

Jg = v Jg = Jg = ,where a="Land J3,J4,and Jgare auxiliary functions.
u+a M+ UK K1

We have derived these auxiliary functions by considering the material is elastic in dilatation
and viscoelastic in distortion for the three viscoelastic models, namely, a Kelvin Model, a Maxwell
Model, and a Standard Linear Solid Model. It is assumed that the time t>0 and the source time

function is the Heaviside step function H (t).
DISPLACEMENT FIELD
Displacement components for the dipole (11) in the x-direction (horizontal dipole
(HD))
Following are the displacement components for the horizontal dipole:
(4-2),37 (23,0102 FoPl2uady0-2h6cdog 1l
R R R R
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Displacement components for the dipole (22) in the y-direction

The corresponding displacement components for the dipole in the y-direction (dipole (22)) at
point (0, 0, c) of an elastic half-space in welded contact with another viscoelastic half-space can be
obtained from the corresponding expressions for dipole (11) on interchanging x and y.
Displacement components for the dipole (33) in the z-direction (vertical dipole (VD))
Following are the displacement components for the vertical dipole:

;1+:iz—c)2 [(Z—Kl)(rcl+J)aj3(t)+KH(Kl+1)35(t)—2] 3{(1<1+1)aj3(t)—1)[1<1(22 —cz)—22(2+20)]
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Al +Dm | H(z+0) cz((zcl +1ad,(t) —1)
KRy
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For ugyy and u(p)y we interchange x and y in Uy and U o)y respectively.

Where Uy, Uy, Up)zare the displacements in medium-1, and Uy, Uy, U) are the

displacements for the dipole in medium-2.

In above relations xy =3-40y ,k» =k =3—4cy ,m="2 =
H
_1-m B_K‘—mK‘l 1-m . 2m(1+xq)
S lemig K+m 1+m’ (A+m)1+x)

u

Hy

Rlz(xz+y2+(z—c)2)y2,R2=(x2+y2+(z+c)2)y2,R3=R1—z+c,R4=R2 +Z+C.

Expressions forj3(t), i, (t) and 55(t) for three viscoelastic models are given below:

For Kelvin Model

u+a

R T
Jat)=Jd3/1-e *

the relaxation time.

Mt

, j4(t)=\]4 l1-e # ,55(11):
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For Maxwell Model

_ag _Hg
Ja(t)=d3| 1+ E1-e #r2 || T ()=d4)1+E 10 #H ||,
a H
Kew o
A B t ) ) )
Jet)=de|14+-H|1-e Htku where T = —t5is the relaxation time.
5 5 it 0 2

For Standard Linear Solid Model

_ﬂ+Za(T) _M(T)
) H +a \ 2 B H +u\ 2
Jalt)=Jq| 1+ l1-e H L Jalt)=dy 1+ 1-e¢ HTH ,
=31 L =31t
_/J+2k/4{T)

Je(t)=de| 1+ —H—|1-¢ Htku\2 WhereTzl,t is the relaxation time.
5 5 2

H+ 2K t2

RESULTS AND DISCUSSION
To show the variation of elastic and viscoelastic displacements with the epicentral distance

r . . . ,
we assume thato =0, =0, x =y =— and define the dimensionless displacements as

V2

4z uc

(UX’Uy’Uz)z—(“(l)x’“(l)y’“(l)Z)’Z>0

_dmuc

= L@ U@y U@z <0
0

For graphical representation, we assume thatz=0,m=2, k =2and 1<T <3.
Fig.2 shows the effect of the relaxation time on the displacement components of the
horizontal dipole for the three viscoelastic models, namely, Kelvin, Maxwell, and Standard Linear

Solid model. The values of displacementU, and U,along x-axis and z-axis increases with the

increase of relaxation time. Graphical representation of displacement components for the three
models is the same except for their maximum and minimum values.
The displacement components assume the maximum value in case of Maxwell and minimum

in case of Kelvin for a particular value of time for all the displacements components as shown in

table 1.
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TABLE 1- Extremum. Values of the displacement components for HD (Horizontal dipole)

Models Extremum. values of the displacement components for HD(Horizontal dipole)
Along x-axis Along z-axis
U X U z
Kelvin 0.09 0.45
Maxwell 0.2 1
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Fig 2. Effect of the relaxation time 1< T <3 on the viscoelastic displacement field of the horizontal dipole at the

interface z =0,m = 2. (a, c, e) Horizontal displacementUXfor Kelvin Model, Maxwell Model, and SLS Model

respectively, (b, d, e) Vertical displacement U , for Kelvin Model, Maxwell Model, and SLS Model respectively

with the epicentral distance % .
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Fig.3 shows the effect of the relaxation time on the displacement components of the vertical
dipole for the three viscoelastic models namely, Kelvin, Maxwell, and Standard Linear Solid model.

The numerical values of displacementU, and U, along x-axis and z-axis increases with the increase

of relaxation time. Graphical representation of displacement components for the three models is the
same except for their maximum and minimum values.

Numerically displacement components assume the maximum value in case of Maxwell and
minimum in case of Kelvin for a particular value of time for all the displacements components as

shown in table 2.
TABLE 2- Extremum. Values of the displacement components for VD (Vertical dipole)

Models Extremum. values of the displacement components for VD(Vertical dipole)
Along x-axis Along z-axis
Uy U,
Kelvin 0.12 -1.25
Maxwell 0.45 -3.1
SLS 0.22 -1.9

e Uw4

« rie—

Fig 3. Effect of the relaxation time 1< T <3 on the viscoelastic displacement field of the vertical dipole at
the interface z = 0,m = 2. (a, c, ) Horizontal displacementU x for Kelvin Model, Maxwell Model, and SLS Model

respectively, (b, d, e) Vertical displacement U , for Kelvin Model, Maxwell Model, and SLS Model respectively
with the epicentral distance % .
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CONCLUSION

The explicit expressions for the displacements in an elastic half-space overlying viscoelastic
half-spaces due to the dipole source have been obtained. The results are also compared graphically
for three viscoelastic models, namely, a Kelvin Model, a Maxwell Model, and a Standard linear solid
Model (SLS). Graphical representations reveal that numerically the displacement components
assume the maximum values in case of Maxwell Model and minimum values are obtained in case of
Kelvin Model. Two welded half-spaces have the same elastic properties atm=1. At T =0 all the
viscoelastic results are same as an elastic solution obtained by Kumari et al. (1992). This study may
have possible applications in the field of geophysics and seismology.
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