

Research article

Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Nanocomposites For Biomedical Applications

Majumder Devipriya Rabin^{1*} and Sayyed Ulfat²

^{1,2}Departmant of Microbiology

^{1,2}Abeda Inamdar Senior College, 2390, K.B. Hidayatullah Road, Azam Campus, Pune 411001,

India.

ABSTRACT

Nanotechnologies represent an unprecedented recent advance which is revolutionizing core areas of biology and medicine. In recent years there has been a rapid increase in applications of nanotechnology in medicine in order to prevent and treat diseases in the human body. Biomedical nano - composites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation.Nano - diagnostic is the term used for the application of nano - biotechnology in molecular diagnosis, which is important for developing personalized therapy. Nanotechnology is based on pharmaco-genomics, and pharmaco-proteomic information but it also consider environmental factors which influence the therapy response. This article discusses current efforts and focuses on key research challenges in the emerging use of nano - composites for potential biomedical applications.

KEY WORDS: Nano - composites, Biomedical Applications, Nanotechnologies

*Corresponding author

Dr. D. R. Majumder

Department of Microbiology M.C.E. Society, Pune, Abeda Inamdar Senior College, 2390, KB Hidayatullah Rd, Azam Campus, Pune 411001, India. E-mail:devipriyamajumder@gmail.com

INTRODUCTION

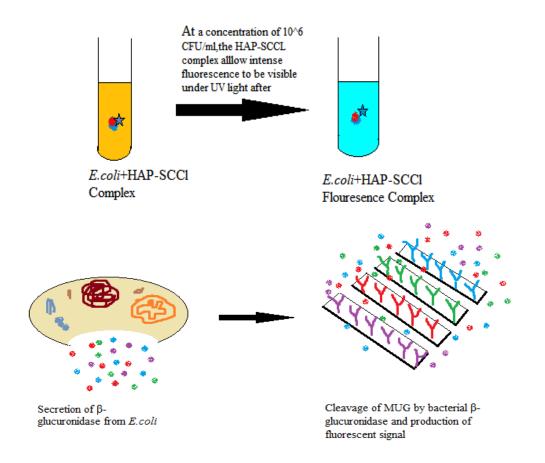
Early nanomaterials were produced without the capacity of controlling their structure and morphology and without a full understanding of what gives nanoparticles their unique properties. The dawn of modern nanotechnology can be traced to Richard Feynman's 1959 Caltech speech, "There's Plenty of Room at the Bottom "*Nano-composite*" is a multiphase solid material which have one, two or three dimensional phases less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material".¹

Bio-nano-composites add a new dimension to the properties of nano-composites, in that they are biocompatible and/or biodegradable materials. Bio-nano-composites forms combinations of multiple areas that brings together biology, materials science, and nanotechnology. New bio-nano-composites are impacting diverse areas, in particular, biomedical science.²In this review, biodegradable materials can be described as materials degraded and gradually absorbed and/or eliminated by the body, where degradation is caused mainly by hydrolysis or mediated by metabolic processes. These nanocomposites are extremely useful in diagnostic purposes yielding fast and accurate results.³ Therefore, these nanocomposites are of immense interest to biomedical technologies such as tissue engineering, bone replacement / repair, dental applications, and controlled drug delivery.^{4,5}

Structures of Nan composites:

The nanocomposites have similar size and structure as most of the biological molecules; therefore, nonmaterial's can be useful for both in vivo and in vitro biomedical research and applications. The integration of nanocomposite with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.^{2,3,4}Nanoparticles possess certain size-dependent properties and particularly with respect to optical and magnetic parameters. Now the size and shape of nano particles can be tailor made too.⁶The structure of nanocomposites usually consists of the matrix material containing the nanosized reinforcement components in the form of particles, whiskers, fibers, nanotubes etc.¹Table 1 presents the detail list of different Nano-composites.

Nano-composites	Structures	Applications
Nano composite cantilevers-Ultrathin ⁷	Freestanding body	-High-throughput screening
		-DNA mutation detection -Diseases protein biomarker detection
	Magnetite Polymer Clay	- provide sensor arrays
Nano composite Carbon nanotubes ⁸		-DNA mutation detection -Disease protein biomarker detection -Tissue engineering -Drug delivery
Nano composite Dendrimers Eg.cisplatin and PLK-1 siRNA loaded PLGA dendrimer immune nano- composites ⁹		-Image contrast detection - Cancer therapy
Nano composite crystals Eg.Cellulose nano- crystal with PVA and AgNP ¹⁰	PVA Chains	 Increased the modulus and tensile strength of the films Decreased the brittleness of the films.
	AgNP Cellulose nanocrystals	-Biocompatible materials in tissue engineering
Nano composite Eg.Nano-shells ¹¹	Targeting ligand Polymeric corona Therapetic load Polymeric core	-Tumor-specific imaging - Therapy
Nano composite Nanowire Eg.nanocomposite of silicon nanowire and polythiophene ¹²	Contacts Cr/Au IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-High-throughtput screening -Disease protein biomarker detection -DNA mutation detection
Nano composite Quantum dots- Eg.CdS QDs- PAMAM-Apt). nano- composites ¹³	Aptamer PAMAM QDs	-Optical detection of gene and protein in animal model and bioassay -Tumor and lymph node visualization


Table 1: Nano-compositesStructure and Applications

SCOPE

The nano-composite plays an important role in biomedical application as drug carriers, wound healing agents due to their high water/solvent holding capacity. Multilevel imaging by advanced nano size fluorophores vindicates the need for the development of these which can be used in all kinds of labelling (cellular and in-vitro labeling for diagnosis and studies concerning metabolic pathways) and imaging techniques, such as PET, SPECT, MRI, CT, TEM and co focal microscopy etc.Fluorescent Nan composites of noble metals and quantum dots find a wide range of applications in multiplex bioimaging, biolebelling and as biosensors. This is possible due to their unique properties such as tunable shape, size, spectral and fluorescence emissions, stability to photo bleaching and biocompatibility, nontoxic nature.¹⁴

Currently used procedures of detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore by using nanotechnology new method was developed based on hydroxypeptite nanoparticles with fluorogenic substrate which is simple, fast, and low cost method of bacterial detection.

For early detection of bacteria by visual and fluorescence spectroscopy techniques the calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture. This method involves the enzyme β -glucuronidase which cleave the substrate, 4-methylumbelliferyl-p-D-glucuronide (MUG).^{1,3}Figure 1 representing the mechanism of bacterial detection by production of fluorescence signal.

Fig 1: Mechanism of production of fluorescent signal

A study on the antibacterial activity of copper nanostructures combined with biopolymers such as cellulose was carried out for *Staphylococcus aureus* and *Klebsiella pneumoniae*, as pathogens. The results showed that the chemical nature and morphology of the nano-fillers have great effect on the antibacterial activity, which increases with increasing CuNP content in the composites.⁸

Eco-friendly synthesis of Chitosan-PVA-Silver (CPSNP) nanocomposite was achieved for sustained release of aspirin which only reaffirms their increasing biomedical applications especially for therapeutic purposes. The swelling capacity and anti-microbial activity was appreciable in view of their wound healing applications and demonstrated significant effects against *E. coli*, *Pseudomonas* sp., *Staphylococcus* sp. and *Klebsiella* sp. Drug loading efficiency (LE), encapsulation efficiency (EE) and in vitro drug release of aspirin as the model drug from the nanocomposite was highly efficient. Thus the Chitosan-PVA-Silver (CPSNP) nanocomposite as a controlled drug delivery system is a workable model.²

For enhanced targeted therapeutic efficacy and safety purpose, combination of therapeutic and diagnostic which results in 'Theranostics' was developed. Integrated theranostic nanoagents can deliver diagnostic imaging agents capable of detecting and monitoring the early onset of diseases and simultaneously transport suitable therapeutics over a prolonged period in order to enhance therapeutic efficacy.⁴

Several Nanocomposite-Polymer complexes (Table 2) and Metal nanocomposites (Table 3) are listed with their multifaceted applications.

NANOPARTICLES	POLYMER	APPLICATIONS
Cloisite ¹⁵	Ethylene vinyl	Used to increase adhesion and growth of human dermal
	Acetate	fibroblasts
Cloisite ¹⁵	Polyurethanes	5 fold lower permeability towards water vapor and
	-	enhanced mechanical properties
Laponite ¹⁵	poly(N-	Ultrahigh elongation with near-complete recovery, rapid
	isopropylacrylamide) hydro	de-swelling responses to temperature changes and large
	gels (PNIPAM)	equilibrium swellings were observed due to addition of
		Limonite to the polymeric matrix.
Laponite ¹⁵	PNIPAM	Cell sheet easily detached by changing temperature.
Laponite ¹⁵	poly(ethylene oxide)(PEO)	Cells cultured on the surfaces of PEO-Laponite gels
		attached and proliferated easily.
Cloisite ¹⁵	Poly(ethylene-	Used for drug delivery-
	co-vinyl acetate)	Addition of nanoparticle resulted in slower release
		ofdexamethasone. Moreover, release kinetics were
		dependent on the aspect ratio and degree of dispersion of
		thenanoparticle
Laponite ¹⁵	Pluronic	Used for drug delivery-
		A temperature dependent sol-gel transition was observed in
		the nanocomposites. Laponite enhanced the dissolution
		resistant properties of the hydro gels and release of
		entrapped
15		macromolecular drug was slowed down
Bentonite ¹⁵	Acrylic acid-	Used for drug delivery-
	PEG methyl	Elution kinetics strongly depended on the interactions
	ether acrylate	between the surface charges of the clay and the drug
Laponite ¹⁵	PEO-	Used for drug delivery-
	Polyamide	Molecular interactions between Laponite and drug resulted in sustained release profiles
Cellulose and Copper ¹⁶	Poly(vinyl alcohol)(PVA)	Similar to Ciprofloxacin and used for wound dressing.
		Antibacterial Activity of Nan composites of Copper and
		Cellulose
Flax cellulose	Starch	Used to improve the mechanical properties and water
nanocrystals ¹⁷		resistance of the starch-based materials
Silver Nanoparticles ¹⁸	Chitin	Used in wound healing applications
Cellulose nanofibres ¹⁹	Poly(vinyl alcohol) (PVA)	Applications in cosmetic industries
Silver nanoparticles ²⁰	Chitin	Antimicrobial activity and Wound healing
Silver nanoparticles ²¹	Chitosan/ polyethylene glycol	Drug Delivery system
Silver Nanoparticles ²	Chitosan- Poly(vinyl	Drug Delivery system
T	alcohol) (PVA)	
Cellulose ¹⁵	Polyvinyl alcohol	As taste sensing material
Silicon oxide(SiO ₂) ²²	Polylactic acid	For Tissue engineering
Metal nanoparticles ²³	Hydroxyl petite polymer	Tissue engineering

Table 2: Nan composite-Polymer complexes and their Applications

Silica ¹⁵	Chitin	Chitinous organic matrix provided a template for bio-
		directed deposition of the silicate mineral phase.
Silica ¹⁵	Chitosan	Improved mechanical properties observed due to addition
		of bioglass. Bioglass aided in significant increase in cell
		adhesion, proliferation and alkaline phosphatase activity.
		Enhanced bone regeneration observed when the
		nanocomposite was implanted in vivo.
Silica ¹⁵	Collagen	Improved bioactivity of the material; accelerated the
		formation of bone-like apatite and led to the differentiation
		of human monocytes into osteoclast-like cells.
Bioglass ¹⁵	PLA	Addition of bioglass fiber enhanced in vitro bioactivity of
		the nanocomposite. Significant increase in alkaline
		phosphatase activity observed in nanocomposite compared
		to pure PLA.
Bio glass ¹⁵	Poly L-lactide	Increase in bioglass concentration reduced water
		absorption capacity but enhanced degradation rate.
Bioglass ¹⁵	Chitosan & Chitosan-	Bioactive nanocomposite scaffolds promoted osteoblast
	Gelatin	cell adhesion and spreading.

Table 3: Metal nanocomposites and their Applications

NANOCOMPOSITES	APPLICATIONS	
Fe/MgO ²⁴	Catalysts, magnetic devices.	
Ni/PZT ²⁴	Wear resistant coatings and thermally graded coatings.	
Ni/ _{TiO2} ²⁴	Photo-electrochemical applications.	
Al/SiC ²⁴	Aerospace, naval and automotive structures.	
Cu/Al ₂ O ₃ ²⁴	Electronic packaging.	
Al/AlN ²⁴	Microelectronic industry.	
Ni/TiN, Ni/ZrN ²⁴	High speed machinery, tooling.	
Cu/ZrN ²⁴	Optical and magnetic storage materials.	
Nb/Cu ²⁴	Structural materials for high temperature applications.	
Fe/Fe ₂₃ C ₆ /Fe ₃ B ²⁴	Structural materials.	
Fe/TiN ²⁴	Catalysts.	
Al/ $Al_2O_3^{24}$	Microelectronic industry.	
Au/Ag ²⁴	Microelectronics, optical devices, light energy conversion	
Pd/Chitosan ²⁵	Catalytic and antibacterial activity	
Pd-Chitosan/Starch ²⁵	Suzuki-Miyaura reaction	
Au/Pt ²⁵	Measles virus diagnosis	

Highlights of different applications of nanocomposites¹⁵ are shown in Figure 2.

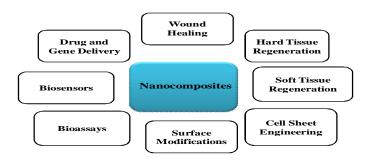


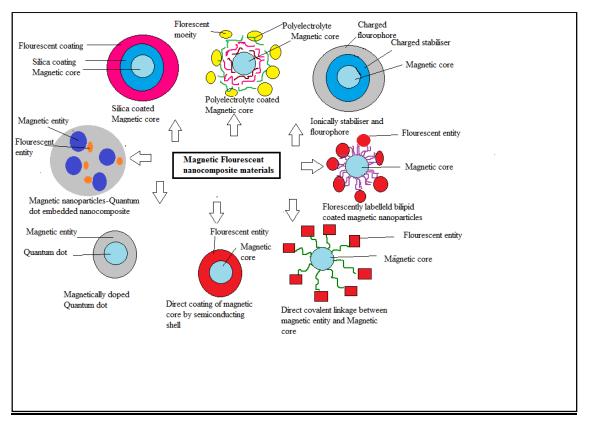
Fig 2: Applications of Nanocomposites

1. **Rapid and Economical**: Nan composites are widely applied in clinical laboratories for bacterial detection in human samples due to the reduced costs of reagents and equipment. In addition, chromogenic and fluorogenic methods have been developed for faster and more accurate detection and identification of microbes. These methods can provide data in a shorter time with higher accuracy (95%-100%) than those based on current methods.²⁴

2. Antibacterial activity: Antimicrobial tests revealed that the Cu nanocomposites have antibacterial action for both bacteria, though with a more pronounced effect in respect to *Staphylococcus aureus* and *Klebsiella pneumonia*.²⁶It has been also reported that photosynthesized palladium nanoparticles showed the bactericidal activity against both Gram Negative as well as Gram Positive bacteria.Polyaniline/Pd-Pt nanocomposite are showing the superior antimicrobial activity.²⁷

3. **Drug Delivery and Thermal Ablation**: Gold nanoshells-hydrogels composite materials have been located with protein and then illuminated at the Plasmon resonancestimulate release and shrinking the hydrogels. The nanoshells caused enhanced drug release and enable multiple bursts of protein by modulated heating. Such devices could have significant drug delivery applications, especially if the stimulant radiation can be administered exogenously to NIR resonant nanoparticles.²⁸It is reported thatChitosan-montmorillonite (Cs-Mnt) nanocomposite showed increased drug release profile.Mantmorillonite is a clay of soft phylosilicate mineral group.Some properties of mantmorillonite clay which are contributing to drug delivery are-large surface area which shows good cation exchange capacity, adsorption capacity, adhesive ability and drug carrying capability.²⁹

4. **Biomedical imaging contrast**: From a single gold nanoparticle the Plasmon resonant scattering produces brighter signal as compared to other single fluorophores,fluorescent beads or quantum dots in microscopic imaging application. The large nanoparticle size relative to fluorophores and quantum dots may limit intracellular imaging application. The two-photon luminescence from NIR resonant gold nanorods has been used to monitor microscopic blood flow in vivo.²⁸


5.Biosensors: An important goal for biosensors is the capability of continuously monitoring concentrations of specific targets in a simple and reliable manner within the physico-chemical and biological constrains of their microenvironment .Recognition-based biosensors capable of specifically detecting chemical and bio-agents in their environment are under active development using fluorescent metal nanos. Huang et al. developed new competitive homogeneous for analyzing proteins using bioconjugated photoluminescent Au nanodots as donors and bioconjugated spherical Au nanoparticles as accepters. An oligonucleotide Aptamer(Apt) has a higher affinity for specific proteins such as a breast cancer marker protein, platelet-derived growth factor (PDGF).Nanoclusters of PDGF-modified fluorescent gold nanoparticles can attach onto Apt-modified particles,

consequently resulting in fluorescence quenching ("off" state) through resonance energy transfer. Addition of free PDGF can further recover the fluorescence of PDGF-modified nanoclusters through the competitive binding, releasing the quenched nanocluster to "on" state. Another example of sensing proteins, are capable of sensing concanavalin A with high sensitivity and remarkable selectivity over other proteins and lectins also has the capability of binding, yielding brightly fluorescent cell.²⁸ Different Nanocomposites are used as biosensor by various techniques (Table 4)

NANOCOMPOSITE BIOSENSOR	SUBSTANCE TO BE MONITORED	TECHNIQUE
Fluorescent gold NC(AuNC@MUA) ¹	Mercury Hg(II)	FluorescenceQuenching
glutathione-protected gold nano(AuNC@GSH) ¹	Calcium Ca2+	FluorescenceQuenching
fluorescent mannose-protected Au NCs AuNC@Man ¹	FimH of type 1 in E. coli	Fluorescence microscopy
Aptamer modified NCs ¹	PDGF (a breast cancer marker)	Fluorescence microscopy
Reduced graphene oxide-Chitosan NCs ²⁷	Hydrogen peroxide	Electrochemical detection
Chitosan-graphene/glucose oxidase NCs ²⁷	Glucose	Electrochemical detection

Table 4: List of Nanocopmosite biosensors

6. Bioimaging: Multilevel imaging from molecular to medical scales demonstrates the need for the development of advanced nano-size florophores that can be used in all kinds of labelling and imaging techniques, such as PET, SPECT, MRI, CT, TEM and confocal microscopy etc. Tunablefluorescence, strong quantum-size confinement ,stability to photo bleaching, higher biocompatibility these novel optical properties render the fluorescent noble-metal ,quantum dots(QD's) ideal fluorophores for multicolor and multiplexing applications in biomedical engineering and molecular biotechnology.^{8,14}The semiconductor quantum dots (QDs) have already become a new class of fluorescent labels due to their unique optical properties as well as offering potential invaluable benefits such as cancer targeting and biomedical imaging. QDs containing heavy metals are unsuitable for in vivo clinical use because of their toxic, and may pose risks to human health as well as the environment under certain conditions. In contrast to QDs and organic dyes noble metal nano-clusters (NCs) are highly attractive for bioimaging and bio labeling applications due to their low toxicity as well as its ultra-fine size. The labeling of endothelial cells with fluorescent gold NCs was found to detect cellular functions including angiogenesis, vasodilatation, coagulation, adhesion, and junction integrity. Humanfluorescent gold nanocluster-labeled late endothelial progenitor cells also possessed angiogenic potential in vitro and in vivo.28 Various Magnetic Fluorescent nanocomposites are depicted in Fig.3.

7. Tissueregeneration: Bone defects, ranging from small voids to large segmental defects are a prevalent and persistent problem in clinical orthopedics and dentistry. Bone defects arise from a variety of causes including fracture nonunion, dental and orthopedic implant fixation, trauma or tumor resection, periodontitis, and musculoskeletal disorders such as rheumatoid arthritis. So in these clinical circumstances, bone repair and regeneration and can be accelerated by using natural and synthetic bone grafts are desired to ensure rapid restoration of skeletal function. Hence, Nanocomposite polymer scaffolds for tissue engineering are prepared.²⁹Perspective materials for production of new generation of scaffolds for bone tissue regeneration are polymeric-based nanocomposites, which plays a role of an artificial extra-cellular matrix (ECM) which serves as temporary support where isolated cells are introduced to form a tissue (Fig 4). These scaffold should be biocompatible, biodegradable, promote cell attachment and mechanically stable. The ideal scaffold should possess mechanical properties adequate to support growing bone tissue, degrade uponbone tissue growth and have high porosity with interconnectingpores enabling ingrowth of osteoblasts cells. The new direction in tissue engineering is modification of a polymer matrix with nanoparticles which caninfluence on mechanical, electrical, physicochemical andbiological properties much more suitable for human body. Bioactive compounds of nanocomposite materials can be prepared with silica (SiO₂), hydroxyapatite (HA), tricalciumphosphate (TCP) or carbon nanotubes (CNT).Silica

 (SiO_2) plays a fundamental role in bioactive glasses becausesilanolan groups interact with calcium and phosphate ions forming an amorphous calcium phosphate which also can be found in the natural bone. Polylactic based nanocomposite scaffolds containing SiO₂ as a ceramic bioactive nanoadditive were prepared. Preliminary studies showed that 2 wt. % of the nanofiller improves mechanical properties. It was observed that small amount of the nano-filler resulted in increasing proliferation of osteoblast-like cells contacted with PL/DLA. The studies proved that nano-SiO₂ altered so far inert polymeric material to bioactive one.³⁰

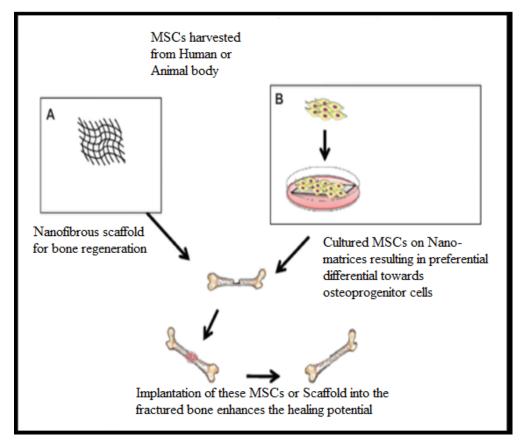


Fig 4.Tissue Regeneration by Nanotechnology

CONCLUSION

Nanotechnology is an emerging field which has immense applicationespecially in the field of medicine. Nanocomposites are used for diagnosis and therapy. Metal nanocomposites play different roles as optical and magnetic storage materials, structural material for high temperature appliacations. Some nanocomposites are used asbiosensors. Fluorescencelabeled magnetic nanocomposites are playing important role in bioimaging.

REFERENCES

1. Claudio R. and Tamara L."Development of a Calcium Phosphate Nan composite for Fast Fluorogenic Detection of bacteria". Molecules. 2014;(9):13948-13964.

- Devipriya R., Pruthvi C., Deepali B. et al. "Eco-friendly synthesis of chitosan-pva-silver nanocomposite for sustained release of aspirin". World Journal of Pharmaceutical Research. 2018; 7(4):71-88.
- Devipriya R., Juned P. and Hemant Z."Calcium phosphate nanocomposite for rapid fluorogenic detection of pathogen" .World Journal of Pharmaceutical Research.2018; 7(4):18-30.
- 4. Devipriya R. "Nan biotechnological Applications in Health and Medicine". Lambert Academic Publishing, GmbH & Co. KG.2017; 7(4):1-113.
- Fuli Z., Dan Y., Ruiwei G. et al. "Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications". Nanomaterials.2015 ;(5):2054-2130.
- 6. Mansura S., Devipriya R."S-layer Proteins Tailor- made Nanoparticles". International Journal of Innovative Research in Science engineering and Technology.2013; 2(9):4693-4706
- 7. 7.Feng H., Tianhong C., and Yuri M."Ultrathin Cantilevers Based on Polymer–Ceramic Nanocomposite Assembled through Layer-by-Layer Adsorption". Institute for Micro manufacturing, Louisiana Tech University.2004; 4(5): 823–825.
- 8. Marco B., Assunta B., Laura Mayol et al.: Nanoparticle-Integrated Hydrogels as Multifunctional Composite Materials for Biomedical Applications".Gels.2015;(1):162-178
- 9. Mohd. A., Saba T., Aijaz A. et al." Dendrimer-PLGA based multifunctional immunonanocomposite mediated synchronous and tumor selective delivery of siRNA and cisplatin: potential in treatment of hepatocellular carcinoma".RSC Advances.2015 ;(5): 39512-39531
- Jonshy G., Vallayil A., Karna V. et al."Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles".J. Mater. Chem.2012 ;(22): 22433-22439
- Cypes, S., Saltzman, W., Giannelis, E."Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties". J. Control. Release.2003 ;(90):163-169.
- Gen W., Jia Y.,KenO. et al."Dual layer semiconducting nanocomposite of silicon nanowire and polythiophene for organic-based field effect transistors". Organic Electronics.2016; (35):158-163
- Jing-Jing Z., Jun-Tao C., Gui-Fang S. et al." Sandwich-format electrochemiluminescence assay for PDGF-BB using quantum dots-dendrimernanocomposites as probe". Talanta. 2015;(141):158-163

- 14. Cheng-An J., Chih-Hsien L., Jyun-Tai H. et al. "Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application:Recent Progress and Present Challenges". Journal of Medical and Biological Engineering. 2009;29(6): 276-283.
- 15. Chia J., Akhilesh K., Patrick J. et al."Development of Biomedical Polymer-Silicate Nanocomposites". A Materials Science Perspective Materials.2010 ;(3):2986-3005.
- Ricardo J., Sara D., Patrizia S. et al."Antibacterial Activity of Nanocomposites of Copper and Cellulose". Hindawi Publishing Corporation. BioMed Research International. 2013; 1-6.
- 17. Xu R., Manias E., Snyder A. et al."Low penneability biomedical polyurethane nanocomposites". J.Biomed. Mater. Res.2003 ;(64): 114-119.
- 18. Xu R., Manias E., Snyder A. et al."New biomedical poly (urethane urea)—layered silicate nanocomposites". Macromolecules. 2001;(34):337-339
- 19. Ray, S., Yamada K., Okamoto M. et al."Polylactide-layered silicate nanocomposite: A novel biodegradable material". Nano Letter.2002 ;(2):1093-1096.
- 20. Rohan A. Hand D."Polymer Nanocomposites for Biomedical Applications".MRS Bulletin.2007 ;(32):354-358.
- 21. Lee J., Park, T.,Park, H. et al."Thermal and mechanical characteristics of poly (L-lactic acid) nanocomposite scaffold". Biomaterials.2003 ;(24):2773-2778
- Lee Y.,Lee J.,An I. et al."Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds". Biomaterials.2005 ;(26): 3165-3172.
- 23. Majumdar S. and Adhikari B."Polyvinyl alcohol-cellulose composite: a taste sensing material". Bull. Mater. Sci.2005 ;(28): 703–712.
- 24. Doss, S."Surface properties of hydroxyapatite:The effect of various inorganic-ions on electrophoretic behavior". J. Dent. Res.1976 ;(55):1067–1075.
- 25. Dhanavel S., Manivannan N., Mathivanan N. et al."Preparation and characterization of crosschitosan/palladium nanocomposites for catalytic and antibacterial activity".Journal of Molecular liquid.2018 ;(257):32-41
- 26. Haraguchi, K. and Takehisa, T."Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties". Advan. Mater.2002 ;(14):1120-1124.
- 27. Dimitrios P."Polyelectrolyte-graphene Nanocomposites for Biosensing Applications".Current organic chemistry.2015 ;(19):1819-1827.
- Sanjay T."Development of Fluorescent nanoparticles "Quantum Dots" for biomedical application". UCL Press. 2013; 1-223

- 29. Stodolak Z., Fraczek S., Wiechech A. et al. "Nanocomposite Polymer Scaffolds for Bone Tissue Regeneration". Acta physica polonica. 2012 ;(121):518-521.
- Lee, W. and Chen, Y."Effect of bentonite on the physical properties and drug-release behavior of poly (AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive".
 J. Appl. Polym. Sci. 2004 ;(91):2934-2941.