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ABSTRACT 

Density estimation is the ubiquitous base modelling mechanism employed for many tasks 

including clustering, classification, anomaly detection and information retrieval. Commonly used 

density estimation methods such as kernel density estimator and k-nearest neighbour density 

estimator have high time and space complexities which render them difficult to apply in  problems 

with large data size with a moderate number of dimensions. This is the fundamental limitation in the 

algorithms.The density estimation method which stretches this limit to an extent in dealing with 

millions of data more easily and quickly. We analyse the error of the estimation using a bias-variance 

analysis. We then perform an empirical evaluation method by replacing density estimators with the 

density-based algorithms, namely, DBSCAN, LOF and Bayesian classifier, representing three 

different data mining tasks of clustering, anomaly detection and classification respectively. The 

results show that these estimation method significantly improves their time complexities, while 

maintaining or improving their task-specific performances in clustering, anomaly detection, and 

classification respectively.  
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INTRODUCTION  
Density estimation is ubiquitously applied to various taskssuch as clustering, classification, 

anomaly detection andinformation retrieval. Despite its pervasive use, thereare no efficient density 

estimation methods thus far. Most existing methods such as kernel density estimator and k-nearest 

neighbor density estimator cannot be applied toproblems with even a moderate number of 

dimensions andlarge data size. This paper is motivated to study efficient method for density 

estimation. The threeexisting density-based algorithms, when employ the density estimator, set a 

new runtime benchmark that is ordersof magnitude faster.  

1. The density estimation method studied has asignificant advantage over existing 
methods in termsof time and space complexities. 

2. Establish the characteristics of the method through a bias-variance analysis. 
3. Verify the generality of the method by replacingold density estimators with the 

threedensity-based algorithms. 
4. Significantly simplify and speed up the current algorithms using set-based 

definitions instead of the common point-based definitions 
The density estimation method distinguishes itselffrom existing methods by: 

5. Employing no distance measures in the density estimation process. 
6. Having average case sublinear time complexity andconstant space complexity. 

Thus, it can be applied tovery large databases in which methods suchas kernel and 
k-NN density estimators are infeasible, the other density estimators are presented 
in Section II, In Section III we analyses the error producedby the new estimator by 
a bias-variance analysis and providea comparison of the estimation results 
between the density estimator in Section IV. A discussion of the related issues 
andthe conclusions are provided in the last two sections. 

DENSITY ESTIMATION 
The most commonly used, density estimation methods, namely kernel density estimator and k-

nearest neighbor density estimator is discussed here. 

1. Kernel Density Estimator 
Let x be an instance in a d-dimensional space Rd. Thekernel density estimator (KDE) defined 

by a kernel function K(·) and bandwidth b is given as follows. 

(ݔ)ܧܦܭ݂̅ =
1
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The difference x - xi requires some form of distance measure; and n is the number of 

instances in the given dataset D. 

2. K-Nn Density Estimator 
A k-nearest neighbour (k-NN) density estimator can be expressed as follows 
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WhereN(x; k) is the set of k nearest neighbors to x; andthe search for nearest neighbors is 

conducted over D of size n.Both KDE and k-NN density estimators have O(n2)time complexity and 

O(n) space complexity in order to estimate the densities of n instances. Although there arevarious 

indexing schemes to speed up the search for nearest neighbor in order to aid the k-NN density 

estimator, theyare not satisfactory in terms of dealing with high dimensional problems and large data 

sets. 

3. Density Estimator Based On Mass 
Mass is more fundamental than density estimator can be constructed from mass. The key 

advantage of mass is that it can be computed very quickly. The density estimator based on mass 

inherits this advantage and executes significantly faster than density estimators such as KDE and k-

NN.It raises the capability of density-based algorithms to handle large data sets to a new high level.A 

mass base function is defined as follows 

݉൫ܶ(ݔ)൯ = ቄ݉									݂݅	ݔ	ݏ݅	݊݅	ܽ	݊݋݅݃݁ݎ	݂݋	ܶ(. )
݁ݏ݅ݓݎℎ݁ݐ݋																																								0

 

where T (·) is function which subdivides the feature space into non-overlapping regions based on the 

given data set D; and m is the number of samples in a region of T (x) in which x falls into.Ting and 

Wells shows that mass can also be effectively estimated using data subsets Di ⊂ D (i = 1,…,t) and its 

associated Ti(x|Di), where |Di|= ߮ ≪ ݊	 Each Diis sampled without replacement from D. The mass 

estimatedusing subsamples is defined as 

 
We now introduce the new density estimators based on mass (DEMass) and describe its 

implementation.Once mass is estimated, density can be estimated as a ratio of mass and 

volume.Thus, the density estimators based on mass functions m(T(x)) and Ti(x|Di) are defined 

respectively as 

 

 
wherev and vi are the volumes of regions T (x) and Ti(xjDi), respectively.We use the term DEMass 

to refer to density estimator.DEMasshas two key differences/advantages when compared to the one 

based on a kernel method or k-NN:f¯mis estimated from t instances only which are significantly 
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smaller than D in a large data set. It sums 

over t number of randomly generated regions; whereas f¯KDEsums over n number of instances in D, 

and f¯kNNalso requires a search on the entire data set. For a large data set, f¯ is prohibitively 

expensive to compute in these two methods.f¯mneeds no distance measures. 

ERROR ANALYSIS THROUGH BIAS-VARIANCE DECOMPOSITION 
The density estimator based on mass (DEMass) f¯m(x) can be thought of as a random 

variable because of its dependence on D and its random subsamples Di (i = 1,…, t). Accordingly, we 

analyse Mean Squared Error (MSE) of¯fm(x) from its true probability density pd(x). It is defined as 

 
where the expectation E[·] is taken over the distribution of ¯fm(x).The result indicates that the 

variance increases when level h increases. Also, the result does not change even if we use the higher 

order approximation because the term pd(ci)=vi dominates in the above formula. The property of 

DEMass, revealed from this error analysis, is similar to that of the conventional kernel density 

estimator which shows a bias-variance trade off—the bias decreases as the kernel bandwidth b 

decreases but this increases the variance; and the reverse is true if the kernel bandwidth in increased 
17. The parameter k in k-NN density estimator has the same effect. In conclusion, DEMass has a 

comparable estimation of density with the kernel density estimator if both trade-off bias and variance 

equally well; and it is indeed the case in practice. Figure 1 shows the estimation result of a normal 

distribution using KDE and DEMass, respectively. It demonstrates that DEMass produces similar 

result to that generated by KDE, for different data sizes.Smoothing can be applied by increasing b for 

KDE or decreasing h for DEMass which produces the estimation results as shown in Figure 2.  
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The parameters used for DEMass are: t =1000 and = n when n =10;100; = 1000 when n 

=1000000.Note that in either settings shown in Figures1 and 2, the estimations of both KDE and 

DEMass approach the truedistribution as the number of instances increases. 

COMPARISON RESULT 
OneBig and Pendigits. The OneBig data set has 20 attributes, 9 clusters and a total of 68000 

instances. Thebiggest cluster has 50011 instances, and each of the other eight clusters has 

approximately 1000 instances. In addition, there are 10000 noise instances randomly distributed in 

the feature space. The Pendigits data set has 16 attributes. 

 
DEMass-DBSCAN vs DBSCAN in the 48-dimensional Ring-Curve-Wave-TriGaussian data 

set. Note that DBSCAN completed the task of the one-million data set (at data size ratio=150) in 36 

days versus DEMassDBSCAN’s 4.5 hours. Even with the 10-million data set, DEMass-DBSCAN 

completed it in 38 hours.Clustering results in the OneBig and Pendigits data sets for DEMass-

DBSCAN (h = 3 for OneBig; h = 2for Pendigits) and DBSCAN (∈= 0:1 for OneBig; (∈= 0:2 for 

Pendigits).10 clusters. Each cluster has approximately 1100 instances which makes up a total of 

10992 instances.The result in showed that DEMass-DBSCAN and DBSCAN for OneBig had the 

same clustering result in terms of F-measure and number of clusters; but DEMassDBSCAN ran 

faster than DBSCAN by a factor of 7. Note that DEMass-DBSCAN had correctly identified all but 

one of the 10000 noise instances; whereas DBSCAN correctly 

identified all of the noise instances.

For Pendigits, the resultshowed that although DEMass-DBSCAN had a lower FMeasure than 

DBSCAN, it was better than DBSCAN inall other measures: it had only 20% instances 

unassignedwhereas DBSCAN had 57% instances unassigned; DEMassDBSCAN found 47 cluster 
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whereas DBSCAN detected 65.Run time (in seconds) of a 10-fold cross validation for DEMass-

Bayes and existing Bayesian classifiers: NB-KDE, NB-GD, BayesNet and AODE with default 

parameters. 

 
Scale up test: In order to examine how well the classifiers scale-up to large data size, we used 

the 48- dimensional Ring-Curve-Wave-TriGaussian data set, used in section VI-A. Data size was 

increased from 7000 to 70000, half-a-million, 1 million and 10 million. Figure showed the increase 

in runtime of DEMass-Bayes and the existing Bayesian classifiers. With the increase in data size by 

a factor of 10, 75, and 150, DEMass-Bayes increased its runtime by a factor of 2, 9, and 17. The 

closest contender AODE increased its runtime by a factor of 6, 45, and 91, followed by NB-GD (12, 

128, 286), BayesNet (15, 167, 374), and NBKDE (38, 2345, 8721). Even with the data size increase 

by a factor of 1500, DEMass-Bayes only increased its runtime by a factor of 190, whereas BayesNet, 

NB-GD and AODE increased their runtime by factors of 7046, 6665 and 1038 respectively. 

DEMass-Bayes has a better scale up capability than the existing Bayesian classifiers. 

 

CONCLUSIONS AND FUTURE WORK 
The new density estimation method we introduced have two unique features which cannot be 

found in existingdensity estimation methods. First, it is the first density estimator that utilizes no 

distance measures. Second, it hasaverage case sublinear time complexity and constant space 

complexity. Existing density estimators must use a distance measure and have time and space 

complexities a lot worse than linear. The time and space complexities achieved a new benchmark for 
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density-based algorithms, of what previously thought impossible. The bias-variance analysis reveals 

that the new density estimator has the same characteristic as kernel density estimator, i.e., both have 

a smoothing parameter used to trade-off between systematic error (bias) and random error 

(variance).Making full use of the features in the new density estimator, we show that two current 

algorithms, in the unsupervised learning setting from two key areas of data mining, can be 

significantly simplified through set-based definitions rather than the current point-based definitions. 

This has directly contributed to their improved time complexities. In the supervised learning setting, 

DEMass enables direct estimation of p(xjy) for the first time, without any assumption.Our evaluation 

shows that the new density estimator not only successfully replaces existing density estimatorsin 

three density-based algorithms, DBSCAN, LOF and Bayesian classifiers, but reduces their runtime 

to become algorithms with the lowest sub-linear time complexity. In addition, DEMass-DBSCAN, 

DEMass-LOF and DEMass-Bayes often achieve equivalent or better task-specific performances than 

DBSCAN, LOF and existing Bayesian classifiers. 

Our result implies that most, if not all, density-based algorithms can reap the immediate benefit of 

significantlylowering their time complexities by simply replacing the existing density estimators 

with the new one, with a potential further improvement in the task-specific performance. 

Future work has three directions. First, we will apply the density estimator in existing algorithms in 

moreareas. We will ascertain whether there are areas in which thenew density estimator cannot 

replace existing density estimators. Second, compare DEMass-density-based approacheswith mass-

based approaches to determine their relativestrengths and weaknesses. Third, we will explore 

DEMass’sability to deal with high dimensional problem. 
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