

Research article

Available online www.ijsrr.org

International Journal of Scientific Research and Reviews

ISSN: 2279-0543

Load Flow Analysis Using MI Power Softwa

Sweta Shah¹ and Sumit Gupta^{2*}

Indus University Ahmedabad Indus University Ahmedabad Student (M-TECH EPS) Email:Swetashah.el@indusuni.ac.in¹, guptasumit8831@gmail.com^{2*}

ABSTRACT

The paper helps to know the basic of Optimal Load Flow Analysis of power system. Load Flow Analysis are used to validate that the power transfer from generators to consumers through the grid system is stable, reliable and economical. Load flow analysis is very useful for stabilityanalysis, future expansion planning and in determining the best economical operation for existing systems. Load flow analysis also helpful for now the proper setting of the protection devices. Power system analysis also help to ensure to know that the safe operation of cables, transformer, transmission lines and other components of power system. Various data of power system like active power, reactive power,load angle, power factor, thermal limit has be known. are to **KEYWORDS**: Load flow analysis, contingency analysis, line loading, power system operation.

*Corresponding author:

Sumit Gupta

Indus University Ahmedabad Indus University
Ahmedabad Student (M-TECH EPS)

Email: guptasumit8831@gmail.com

1.INTRDUCTION

A well-designed system saves on cost in implementing and maintenance. The primary tools for analysis for steady state operation is so called power flow analysis or Load flow studies where the voltage and power flow through the system is determined. Another very popular steady state analysis tool is the short circuit analysis for determining the fault current through system. Load flow analysis helps us to determine flows of power in system during normal and emergency conditions and study the transient behaviour of the system resulting from fault conditions and switching operations. A power system is "secure" when it can withstand the loss of one or more elements and still continue operation without major problems.

OBJECTIVES OF POWER SYSTEM STUDY

- ▶ Power flow analysis is very important in planning stages of new networks or addition to existing ones like adding new generator sites, meeting increase load demand and locating new transmission sites.
- ▶ It is helpful in determining the best location as well as optimal capacity of proposed generating station, substation and new lines.
- ▶ The line status should be known. The line should be not overvoltage it means it should not operate near the thermal limit or closed to stability.

2. LOAD FLOW ANALYSIS

Power flow analysis is the backbone of power system analysis and design. The most important information is known from the load flow is the voltage profile in the system If voltage variesin the system, large reactive power due to which there is increase in real power loss and in some extreme cases voltage collapse². If due to demand increase additional lines is to be required a load flow analysis is help how it will relieve overload adjacent lines. With the help of load flow analysis one can also know the study performance of the Transformer, Transmission line, and Generator at steady state³. For load flow analysis there are various methods like N-R METHOD, GAUSS-SIEDEL METHOD, FAST ECOUPLE LOAD FLOW METHOD, among this we are using the N-R METHOD which has the below benefits among the other methods.

LOAD FLOW TECHNIQUES					
Gauss-Siedel Method	Newton-F	Raphson Method	Fast Decoupled L	oad Flow	

Advantages of N-R METHOD

- One of the fastest method convergences to the root
- Easy to convert to multiple dimensions
- More accurate and not sensitive to the factors such like slack bus selection, regulation transformers etc. and the number of iterations required in this method is almost independent of system size

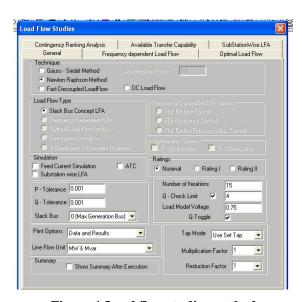


Figure:1 Load flow studies method

3. MI POWER SOFTWARE

Mi Power is a highly interactive, user friendly windows-based Power System Analysis package. It includes a set of modules for performing a wide range of power system design and analysis study⁴. By using the MI-power software we can able to do VARIOUS ANALYSIS FOR POWER SYSTEM like fault analysis, Contingency analysis, Power flow analysis/load flow analysis, Frequency analysis, Protection coordination and others.

4.SYSTEM UNDER SYUDY

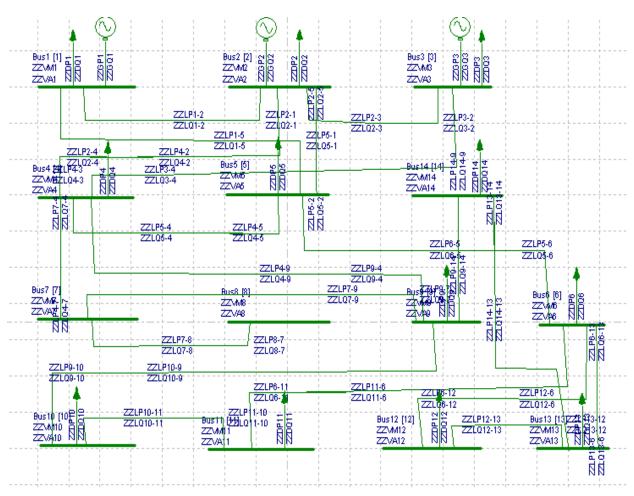


Figure:2 shows the single line diagram of the system under study in MI Power software.

Table:1 Load Details

	LOAD DETAILS					
BUS NO	MW	MVAR				
BUS 2	21.7	12.7				
BUS 3	94.2	19.00				
BUS 4	47.8	3.9				
BUS 5	7.6	1.6				
BUS 6	11.2	7.5				
BUS 9	29.5	16.6				
BUS 10	9.0	5.8				
BUS 11	3.5	1.8				
BUS 12	6.1	1.6				
BUS 13	13.5	5.8				
BUS 14	14.9	5.0				

Numbers of components				
Sr no	DESCRIPTION	No		
1	Bus Number Used	14		
2	Transmission Lines	20		
3	Generator	3		
4	Loads	12		

Table: 2 components details

BUS NO.	KV	BUS NO.	KV
1	220	10	220
2	220	11	220
3	220	12	220
4	220	13	220
5	220	14	220
6	220		
7	220		
8	220		
9	220		

Table: 3 Bus voltage details

The effective and most reliable amongst the three load flow methods is the Newton-Raphson method because it converges fast and is more accurate. In the load flow analysis methods simulated, the tolerance values used for simulation are 0.001 and 0.1.

5. RESULT FILE

Table: 4 BUS VOLTAGE AND POWER WITHOUT ANY CONTIGENCY

	BUS VOLTAGE AND POWER WITHOUT ANY CONTIGENCY							
	Bus Voltage		Ge	Generation		Load		
Bus No.	Magnitude	Phase Angle	Real	Reactive	Real	Reactive		
140.	Per Unit	Degrees	MW	MVAR	MW	MVAR		
1	1	0	303.126	200.285	0	0		
2	0.6338	-915.24	40	977.19	28.544	16.705		
3	0.1027	228.51	0	22.826	9.549	1.926		
4	-0.0256	-3309.17	0	0	2.539	-0.207		
5	-0.0011	-311.55	0	0	-0.12	-0.025		
6	-0.0125	-1388.17	0	0	-0.241	0.161		
7	-0.0029	-1280.25	0	0	0	0		
8	-0.0029	-1280.25	0	0	0	0		
9	-0.0584	-1735.4	0	0	-3.136	1.765		
10	0	-1823.22	0	0	0	0		
11	-0.0062	163.31	0	0	-0.029	-0.015		
12	0.0019	-869.6	0	0	0.006	0.002		
13	0.0002	-1794.86	0	0	-0.006	-0.003		
14	0.0089	-943.23	0	0	0.619	0.208		

Table: 5 BUS VOLTAGE AND POWER WITH CONTIGENCY WHEN GENERATOR 1 IS OPEN

	BUS VOLTAGE AND POWER WITH CONTIGENCY WHEN GENERATOR 1 IS OPEN						
D	Bus V	Bus Voltage		Generation		Load	
Bus	Magnitude	Phase Angle	Real	Reactive	Real	Reactive	
No.	Per Unit	Degrees	MW	MVAR	MW	MVAR	
1	0.8052	-2.48	0	0	0	0	
2	1	0	278.444	262.546	21.7	12.7	
3	0.5977	-26.28	0	24.94	89.573	18.067	
4	0.518	-17.73	0	0	41.539	3.389	
5	0.6129	-6.47	0	0	7.023	1.478	
6	0.1754	-14.55	0	0	3.659	2.45	
7	0.3714	-21.1	0	0	0	0	
8	0.3714	-21.1	0	0	0	0	
9	0.2246	-25.88	0	0	15.21	8.559	
10	0.1794	-22.39	0	0	4.393	2.831	
11	0.17	-22.73	0	0	1.44	0.741	
12	0	-64.88	0	0	0	0	
13	-0.0001	-55.18	0	0	-0.002	-0.001	
14	0	-70.41	0	0	0.002	0.001	

Table: 6 BUS VOLTAGE AND POWER WITH ANY CONTIGENCY WHEN LINE 1-2 OPEN

	BUS VOLTAGE AND POWER WITH ANY CONTIGENCY WHEN LINE 1-2 OPEN							
	Bus V	oltage	Ge	eneration]	Load		
Bus No.	Magnitude	Phase Angle	Real	Reactive	Real	Reactive		
	Per Unit	Degrees	MW	MVAR	MW	MVAR		
1	1	0	114.073	234.035	0	0		
2	2.902	107138.6	40	340.47	55.812	32.664		
3	3.0994	105526.6	0	3098.696	2385.045	481.06		
4	2.7022	133386.8	0	0	11.454	0.935		
5	1.0354	45045.91	0	0	-0.1	-0.021		
6	-1.233	129871.3	0	0	9.799	6.562		
7	-3.9145	6415.1	0	0	0	0		
8	-0.9141	6145.11	0	0	0	0		
9	0.6095	12059.45	0	0	29.5	16.6		
10	3.2485	716.46	0	0	9	5.8		
11	0.5582	-5308.6	0	0	3.5	1.8		
12	1.1745	130531.4	0	0	1.439	0.377		
13	-0.0165	24671	0	0	-0.254	-0.109		
14	0.0961	14066.71	0	0	5.124	1.719		

Table: 7 LINE FLOW AND LINE LOSSES WITH CONTIGENCY LINE1-2 OPEN

LINE FLOW AND LINE LOSSES WITH CONTIGENCY LINE1-2 OPEN							
		FORWARD				Loss	
SR No.	FROM NODE	TO NODE	Real MW	Reactive MVAR	Real MW	Reactive MVAR	
1	BUS 1	BUS 2		LINE	IS OPEN		
2	BUS 2	BUS 3	2260.177	3869.126	4075.205	8297.273	
3	BUS 2	BUS 4	1154.827	-63.267	271.4895	552.763	
4	BUS 1	BUS 5	-140.365	149.284	71.7703	146.1271	
5	BUS 2	BUS 5	1385.428	2595.702	1757.069	3577.459	
6	BUS 3	BUS 4	584.258	4323.327	3386.545	6895.136	
7	BUS 4	BUS 5	1485.64	1992.248	1445.766	2943.635	
8	BUS 5	BUS 6	-190.502	144.128	90.9881	185.2552	
9	BUS 4	BUS 7	-1080.48	-256.872	288.7302	587.8657	
10	BUS 7	BUS 8	-0.253	0.58	0	0.001	
11	BUS 4	BUS 9	396.3	1288.293	501.0.334	1020.123	
12	BUS7	BUS 9	1736.786	2931.942	1295.407	2637.497	
13	BUS 9	BUS 10	243.186	555.429	1691.728	3444.422	
14	BUS 6	BUS 11	94.406	192.715	51.7759	105.4177	
15	BUS 6	BUS 12	-34.588	662.56	494.8986	1007.632	
16	BUS 6	BUS 13	177.199	348.873	172.1127	350.428	
17	BUS 9	BUS 14	54.367	94.995	55.126	112.2386	
18	BUS 10	BUS 11	799.417	2684.56	1270.823	2587.444	
19	BUS12	BUS 13	157.355	324.346	161.0.222	327.8473	
20	BUS 13	BUS 14	-0.242	-0.242	0.7338	1.4939	

Table: 8LINE FLOW AND LINE LOSSES WITHOUT CONTIGENCY

	LINE FLOW AND LINE LOSSES WITHOUT CONTIGENCY								
			FORV	VARD	L	OSS			
SR No.	EDOM NODE	TO NODE	Real	Reactive	Real	Reactive			
	FROM NODE	TO NODE	MW	MVAR	MW	MVAR			
1	BUS 1	BUS 2	82.744	70.98	20.3143	41.3608			
2	BUS 2	BUS 3	62.463	93.03	53.4213	108.7677			
3	BUS 2	BUS 4	43.728	96.711	47.9284	97.5841			
4	BUS 1	BUS 5	113.966	231.57	113.8615	231.8264			
5	BUS 2	BUS 5	45.855	93.005	45.7479	93.1455			
6	BUS 3	BUS 4	1.877	2.458	1.5509	3.1577			
7	BUS 4	BUS 5	0.07	0.158	0.0777	0.1581			
8	BUS 5	BUS 6	-0.002	-0.003	0.0148	0.0302			
9	BUS 4	BUS 7	0.093	0.157	0.0867	0.1765			
10	BUS 7	BUS 8	0	0	0	0			
11	BUS 4	BUS 9	-0.058	0.515	0.6985	1.4221			
12	BUS7	BUS 9	0.042	-0.014	0.3927	0.7906			
13	BUS 9	BUS 10	0.388	0.791	0.3883	0.7906			
14	BUS 6	BUS 11	0.004	0.051	0.0287	0.0584			
15	BUS 6	BUS 12	0.017	0.03	0.013	0.0266			
16	BUS 6	BUS 13	0.018	0.037	0.0181	0.0369			
17	BUS 9	BUS 14	0.52	0.771	0.4333	0.8822			
18	BUS 10	BUS 11	0	0	0.0044	0.009			
19	BUS12	BUS 13	0	0.001	0.0005	0.001			
20	BUS 13	BUS 14	0	0	0.0092	0.0187			

			FC	ORWARD		Loss
SR No.	FROM NODE	TO NODE	Real MW	Reactive MVAR	Real MW	Reactive MVAR
1	BUS 1	BUS 2	-25.06	-32.172	4.484	9.1296
2	BUS 2	BUS 3	114.022	77.331	32.444	66.058
3	BUS 2	BUS 4	94.127	99.348	32.015	65.1837
4	BUS 1	BUS 5	25.709	32.232	4.481	9.1235
5	BUS 2	BUS 5	60.456	82.672	17.9299	36.506
6	BUS 3	BUS 4	-4.837	17.066	1.5052	3.0646
7	BUS 4	BUS 5	-19.243	-2.915	2.4132	4.9134
8	BUS 5	BUS 6	34.099	60.587	21.9971	44.877
9	BUS 4	BUS 7	11.284	16.362	2.5169	5.1244
10	BUS 7	BUS 8	0	0	0	0
11	BUS 4	BUS 9	21.23	33.58	10.0559	20.4742
12	BUS7	BUS 9	7.846	11.907	2.5196	5.129
13	BUS 9	BUS 10	0.591	2.641	0.2484	0.5057
14	BUS 6	BUS 11	1.125	-0.191	0.0723	0.1473
15	BUS 6	BUS 12	3.499	7.125	3.4994	7.1249
16	BUS 6	BUS 13	3.499	7.128	3.5014	7.129
17	BUS 9	BUS 14	5.734	11.67	5.7314	11.6695
18	BUS 10	BUS 11	0.236	0.373	0.0103	0.021
19	BUS12	BUS 13	0	0	0	0
20	BUS 13	BUS 14	0	0	0	0

Table: 9 LINE FLOW AND LINE LOSSES WIH CONTIGENCY GENERATOR 1

Table :10 LINES LOADING DETAILS

LINES LOADING DETAILS						
LINE %	WITHOUT ANY CONTINGENCY	WITH CONTIGENCY WHEN LINE 1-2 OPEN	WITH CONTIGENCY WHEN GENERATR 1 OPEN			
NUMBER OF LINE LOADED BEYOND 125%	1	11	2			
NUMBER OF LINE LOADED BETWEEN 100% AND 125%	1	0	1			
NUMBER OF LINE LOADED BETWEEN 75% AND 100%	8	4	4			
NUMBER OF LINE LOADED BETWEEN 50% AND 75%	4	3	3			
NUMBER OF LINE LOADED BETWEEN 25% AND 50%	2	1	6			
NUMBER OF LINE LOADED BETWEEN 1% AND 25%	3	1	3			
NUMBER OF LINE LOADED BETWEEN 0% AND 1%	1	0	1			

CONCLUSION

This paper represents the load flow analysis by Newton Raphson flow techniques using MI power software which reduced the number of iterations. The software helps to analyse power system operation in an efficient manner and leads the system to effective utilization of power and voltage. Simulation analysis of diagram gives details of system parameters which is highly influence stability and reliability. From the results file we can observe that due to contingency the line loading are changes and power flow also change. Hence this study is very important for power system and analysis.

REFERENCES

- 1. P. S. Bhowmik, D. V. Rajan, and S. P. Bose "Load Flow Analysis: An Overview" World Academy of Science, Engineering and Technology 2012; 63.
- 2. SandeepKaur, Amarbir Singh, Dr. Raja Singh Khela, Jasdev Singh Sandhu, "Load Flow Analysis of IEEE-3 bus system by using Mipower Software", International Journal of Engineering Research and Technology, March-2015; 4(03).
- 3. https://file.scirp.org/Html/7-6201867_60124.html
- 4. http://www.prdcinfotech.com/business/software-engineering-group/software-products/mipower/mipower-applications/
- 5. https://en.wikipedia.org/wiki/Power-flow_study