
A Sujitha Amalin Nancy et al., IJSRR 2019, 8(1), 1310-1315

IJSRR, 8(1) Jan. – Mar., 2019 Page 1310

Research article Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

A Study onthe Effect of Method Overriding In Python

A Sujitha Amalin Nancy*

Department of Computer Science, AJK College of Arts and Science. Navakkarai,

Coimbatore- 641105, T.N, INDIA,
Email: sujithaamalinnancy@gmail.com. Mob No- 7397506777

ABSTRACT
In object oriented programming the fundamental uses of generalization is the reusability of

code and better structuring of the objects description. This paper is about the effect of method

overriding in python which enables developers to combine concepts and increase the reusability of

the resulting software.

*Corresponding author

Mrs. A Sujitha Amalin Nancy
Assistant Professor,

Department of Computer Science,

AJK College of Arts and Science.

Navakkarai, Coimbatore-641 105, T.N, INDIA,

Email: sujithaamalinnancy@gmail.com. Mob No- 7397506777

A Sujitha Amalin Nancy et al., IJSRR 2019, 8(1), 1310-1315

IJSRR, 8(1) Jan. – Mar., 2019 Page 1311

1.INTRODUCTION
Python supports different programming due to its multi-paradigm programming approach

.creating object is the easiest and effective approach to solve programming problem. This is known

as object oriented programming. Attributes and behavior are the two characteristics .example color;

name is the attributes where as dancing and singing are the behaviors.

Python follows the DRY(don’t repeat yourself) concept for an effective programming. In

python the process of using details from a new class without modifying existing class was called

inheritance .while encapsulation hides the private details of a class from other objects. Whereas the

concept of using common operation in different ways for different data input is called polymorphism

2. OBJECT ORIENTED PROGRAMMING CONCEPTS IN PYTHON

2.1 Class
Class is always known as the blue print for the object in object oriented

programmingconcepts.Class contains all the details about the object. For example if pigeon is the

object, we can specify its features like color,size etc in the class.

Here, we use class keyword to define an empty class pigeon. From class, we construct

instance which is a specific object created from a particular class.

A class by itself is of no use unless there is some functionality associated with it.

Functionalities are defined by setting attributes, which act as containers for data and functions related

to those attributes. Those functions are called methods1.

2.2 Object
An object (instance) is an instantiation of a class .when class is defined,only the description

for the object is defined .therefore, no memory or storage is allocated

You can create multiple different objects that are of the same class(have the same variables

and functions defined). However, each object contains independent copies of the variables defined in

the class. For instance, if we were to define another object with the "My Class" class and then change

the string in the variable above2

class pigeon:

species = "bird"

A Sujitha Amalin Nancy et al., IJSRR 2019, 8(1), 1310-1315

IJSRR, 8(1) Jan. – Mar., 2019 Page 1312

Figure 1.class and objects in python

We create instances of the Parrot class. Here, blu and woo are references (value) to our new

objects.Then, we access the class attribute using __class_.species. Class attributes are same for all

instances of a class. Similarly, we access the instance attributes using blu.name and blu.age.

However, instance attributes are different for every instance of a class.

3. INHERITANCE
Inheritance is a powerful tool in object oriented programming.Using inheritance we can

define a new class with little or no modification to an existing class. The new class is called derived

class (or child class)and the one from which we inherits the class is called base class(or parent class)

Instance of
class parrot

object

A Sujitha Amalin Nancy et al., IJSRR 2019, 8(1), 1310-1315

IJSRR, 8(1) Jan. – Mar., 2019 Page 1313

Figure 2. Inheritance In Python

Syntax for inheritance in python:
Class Base Class:

Body of base class

Class Derived Class (Base Class):

Body of derived class

Here, derived class inherits the features from base class, adding new features to it. This

results into reusability of code.

Example for inheritance in python

Class Polygon:

def __init__(self, no_ of_ sides):

self.n=no_of_sides

self.sides=[0for i inrange(no_of_sides)]

definputSides(self):

self.sides=[float(input("Enter side "+str(i+1)+" : "))for i in range(self.n)]

defdispSides(self):

for i in range(self.n):

print("Side",i+1,"is",self.sides[i])

This class has data attributes to store the number of sides, n and magnitude of each side as a

list, sides. Method input Sides() takes in magnitude of each side and similarly, disp Sides() will

display these properly.

A triangle is a polygon with 3 sides. So, we can created a class called Triangle which inherits

from Polygon. This makes all the attributes available in class Polygon readily available in Triangle.

We don't need to define them again (code re-usability). Triangle is defined as follows.

A Sujitha Amalin Nancy et al., IJSRR 2019, 8(1), 1310-1315

IJSRR, 8(1) Jan. – Mar., 2019 Page 1314

classTriangle(Polygon):

def __init__(self):

Polygon.__init__(self,3)

Deffind Area(self):

a, b, c =self. sides

calculate the semi-perimeter

 s =(a + b + c)/2

area=(s*(s-a)*(s-b)*(s-c))**0.5

print('The area of the triangle is %0.2f'%area)

However, class Triangle has a new method find Area() to find and print the area of the triangle. Here

is a sample run.

>>> t =Triangle()

>>>t. input Sides()

Enter side 1:3

Enter side 2:5

Enter side 3:4

>>>t. disp Sides()

Side1is3.0

Side2is5.0

Side3is4.0

>>>t. find Area()

The area of the triangle is6.00

We can see that, even though we did not define methods like inputSides() or dispSides()for

class Triangle, we were able to use them.
If an attribute is not found in the class, search continues to the base class. This repeats

recursively, if the base class is itself derived from other classes.

4. METHOD OVERRIDING IN PYTHON
In the above example, notice that __init__() method was defined in both classes, Triangle as

well Polygon. When this happens, the method in the derived class overridesthat in the base class.

This is to say, __init__() in Triangle gets preference over the same in Polygon.Generally when

overriding a base method, we tend to extend the definition rather than simply replace it. The same is

being done by calling the method in base class from the one in derived class3

(calling Polygon.__ init__() from __init__() in Triangle).

A Sujitha Amalin Nancy et al., IJSRR 2019, 8(1), 1310-1315

IJSRR, 8(1) Jan. – Mar., 2019 Page 1315

A better option would be to use the built-in function super().So, super().__init__(3) is equivalent

to Polygon.__init__(self,3) and is preferred. You can learn more about the super() function in

Python. Two built-in functions is instance() and is subclass() are used to check inheritances.

Function is instance() returns True if the object is an instance of the class or other classes

derived from it. Each and every class in Python inherits from the base class object

>>>is instance (t, Triangle)

True

>>>is instance (t, Polygon)

True

>>>is instance (t,int)

False

>>>is instance (t, object)

True

Similarly, is subclass() is used to check for class inheritance.

>>>is subclass (Polygon, Triangle)

False

>>>is subclass (Triangle, Polygon)

True

>>>is subclass (bool, int)

True

5.REFERENCES
1. https://www.hackerearth.com/practice/python/object-oriented-programming/classes-and-

objects-i/tutorial/

2. https://www.learnpython.org/en/Classes_and_Objects

3. https://www.programiz.com/python-programming/multiple-inheritance

