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ABSTRACT  
The NB model is useful to analyze discrete data. For clustered discrete data when the 

observations are correlated from individual subjects, the NB parameter estimates can be severely 
biased. A score test for testing the random parameter in the over-dispersed clustered discrete data are 
developed and analyzed for the NB model with the assumption that it is used for model fit under the 
null hypothesis. Here, we derived the procedure of the fitted multilevel NB model and developed a 
score test for testing the random parameter; the likelihood ratio tests are used as an alternative test to 
select the best test statistic in terms of power. To demonstrate our proposed method, a simulation 
study and an illustrative example are used. The results showed that when the dataset has 
heterogeneous groups in the clustered discrete data, the multilevel NB model gives a good 
approximation and correct result in the analysis while NB is clearly not adequate for handling 
heterogeneous data since it gives wrong results and it is only appropriate and reliable for 
homogenous groups. From the simulation study, for fixed values of the random and dispersed 
parameters, when the sample size is increasing the power of the score test is increasing. For large 
values of the sample size and random parameters, the difference among different tests become trivial 
in terms of its power. For other cases, the proposed score test is more appropriate for general use 
because of its high Power. 
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1. INTRODUCTION  
The conventional regression methods, including multiple linear regression, logistic regression 

and generalized linear models, assume independence of the observations. In medical sciences, as 

well as in many other fields, data are hierarchical and independence assumption is conceptually 

violated. In fact in this sense, a standard negative binomial regression model is a purely fixed effects 

model. The random coefficients models when the model coefficients are also allowed to vary, more 

complex mixed effects models may be constructed by nesting levels within one another.  

Gaussian distribution is typically used to describe the intercept randomness. The intercept 

only model sometimes referred to as an empty model or null model; this is the simplest case of the 

multilevel regression model. This model only contains random groups and random variation within 

groups. It can be expressed as a model where the dependent is the sum of a general mean, the 

random effect at the group level, and a random effect at the individual level. The addition of an extra 

parameter to indicate a randomly distributed intercept classifies the models as a random intercept. It 

is understood that random effects are the same within each cluster, but they differ between clusters.  

 The multilevel regression model has become known in the research literature under a 

different name, such as, “random coefficient model”(de Lecuw & Kreft, 1986 ;Long ford, 1993)1, 

“variance component model”(Long ford, 1987)2, “hierarchical linear model”(Raudenbush & Bryk, 

1986, 1988)3, “mixed effects or mixed model”(Little, Milliken, Straup & Wolfing, 1996)4 all are 

very similar and jointly as multilevel regression models. All of them are assuming that there is a 

hierarchical data set with one single outcome variable that is measured at the lowest level and 

explanatory at all existing levels (Goldsten, 2003)5. Until recently, nearly all discussion and 

application of multilevel models have been of continuous response models. Binary response models, 

especially logistic models were introduced about more than a decade. The multilevel mixed models 

are a comparatively new area of research, with multilevel count models being the most recent, J.M. 

Hilbe (2007)6.Comprehensive studies of mixed models are given by Searle, casella, and MC- 

Culloch (1992)7, Verbeke and Molenberghs (2000)8, Raudenbush and Bryk (2002)9, Demidenko 

(2004)10, Hedeker and Gibbons (2006)11, McCulloch, Searle, and Neuhaus (2008)12, Rabe- Hesketh , 

and Skrondal (2012)13  are good review on applied multilevel count data.  

 The basic idea of the multilevel analysis is that data sets with a nesting structure that 

include unexplained variability at each level of nesting are usually not adequately represented by the 

multiple regression analysis. The reason is that the unexplained variability in single level regression 

analysis is only the variance of the residual term. The multilevel data has a more complicated 

structure related to the fact that many populations are concerned with modeling in such data which 
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embrace one population for every level (Snijders and Bosker, 1999)14. The objectives of our study 

wereto develop a multilevelNB model for clustered discrete data. 

2.STATISTICAL METHODS 

2.1. The Multilevel Negative Binomial Regression Model  
 The effects of adding a random component to the linear predictor are to add extra correlation 

to the model, which in turn induces over dispersion, the level of dependency must be adjusted by the 

models if the resulting levels of over dispersion are to be accommodated.In this study, the clustering 

of the data points within geographical regions offers a natural 2- level hierarchical structure of the 

data, that is, children are nested within regions. The random effects model begin with the same 

notation as fixed effects models in that heterogeneity parameters is added to the linear predictor. 

Moreover, the fixed effects parameters  ߚ , is now considered to be an iid random parameter rather 

than a fixed parameter and it is derived from a known probability distribution.  

When the outcome variable is a count denoting the number of time that an incident occurred, 

a Poisson regression model can be accustomed relate the mean number of events to a group of 

explanatory variables employing a logarithmic link function.The NB regression model be used as 

(ߤ)	݈݃ = ܺߚ ,  ܻ~ܰܤ	(ߤ,ܿ)-----------------------(1)     

Where ܺ denotes a p×1 column matrix of covariates measured with the ݅௧ subject, ܻ 

denotes the count outcome variable measured with the  ݅௧ subject, ߚ denotes a 1×p row matrix of 

the regression coefficients and the parameter ߤ denotes the expected or mean number of events for 

the ݅௧ subject given their set of observed covariates. Let ijY be the response variable for the 

observation j of group i, i =1, 2… k; j = 1, 2… in . Without lose of generalization, consider a two 

level negative binomial model for cluster i, the conditional distributions of the outcome variable
`

21 ),...,,(
iiniii yyyy  , given a set of cluster level random effect i and the conditional over 

dispersion parametersc in a mean over dispersion parameterization, is 

	f൫ݕ/ߤ , ܿ൯ = ݔ݁	 ൛݈݃┌൫ݕ + ܿିଵ൯ − ݕ൫┌݈݃ + 1൯ − ൟ(ିଵܿ)┌݈݃ + ݕ൫ܥ , ܿ൯


ୀଵ

… (2) 

Whereܥ൫ݕ , ܿ൯ is defined as − ଵ

݈݃ ቄ1 + ݔ݁ ቀ


+ ቁቅ݈ܿ݃ − ݈݃ݕ ቄ1 + ݔ݁ ቀ−


−

 ൯ቅ݈ܿ݃
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Where݈݃	(ߤ) = 		


= ఉݔ + ߙ, the mixed effect model for the mean response withߙݖ = ߙ +

ܦ
భ
మݑ,c୧ is the dispersion parameter for group i, and ݔ is a p×1 vector of time independent 

covariates. Where the u୧`s are independently and identically distributed with normal distribution with 

zero mean and unit variance. Since we want to test homogeneity across and within groups we 

consider the random intercept model in which ݖ = 1for all i,j. Thereforeα୧`s	 are independently and 

identically distributed with meanα  and variance D. Model (2) is an extension of the NB regression 

model to include normally distributed random effects at different group levels. The standard NB 

model is used to model over dispersed count data for which the variance is greater than that of a 

Poisson model. In a Poisson model, the variance is equal to the mean, and thus over dispersions are 

defined as the extra variability compared with the mean. Our interest is to test the null 

hypothesisܪ:ܦ = 0	against the alternativeܪ:	ܦ > 0. This implies that testing homogeneity across 

groups as well as testing homogeneity with in groups as the intra cluster or within group correlation 

coefficient assuming that common over dispersion parameter c overall groups or individuals (see 

carrasco and Jover, 2005)15. 

2.2. Derivations of  the Score Test Based on the Multilevel NB Model 
We consider a multilevel NB model in (2), our purpose is to develop a score test of 

homogeneity between and within groups for over dispersed count data.  Let ijY be the response 

variable for the observation j of group i, i =1, 2… k; j = 1, 2… in  from the NB distribution denoted 

by f൫ݕ/ߤ , ܿ൯ and given by  

┌൫ݕ + ܿିଵ൯
┌൫ݕ + 1൯┌(ܿିଵ)

ቆ
1

1 + ܿߤ
ቇ
షభ

ቆ
ܿߤ

1 + ܿߤ
ቇ
௬ೕ

 

The mean and the variance of the outcome variable ijY  are 

ߤ = ܧ ቀ ijY ቁ = ݃`൫ߠ൯ = ݔ݁	 ቀݔߚ + ݖ i ቁ 	and	ܸܽݎ൫ݕ൯ = ଶߪ = ܿ݃``൫ߠ൯ = (1ߤ +  (ߤܿ
The i୲୦ term in the log- likelihood of the multilevel NBmodel in (1) can be written as 

,ߙ,ߚ)ܮ ܿ) = ݈1)݃ + ݈ܿ) + ݕ

௬ೕ

ୀଵ

ߚ`ݔ) + ቀߙ + ܦ
భ
మݑቁ



ୀଵ

− ൫ݕ + ܿିଵ൯݈݃൭1 + ݔ݁ܿ ቆݔ`ߚ + ቀߙ + ܦ
భ
మݑቁቇ൱… … … (3) 

To determine the score function, we follow the procedures in the above equation. Then, the first and 

second derivatives of the log likelihood equation with respect to√ܦ are 
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߲
ܦ√߲

ෑ݈݃ ݂



ୀଵ

൫ݕ ,ߙ,ߚ, ܿ൯ = ݑ
൫ݕ − ൯ߤ
൫1 + ൯ߤܿ



ୀଵ

 

ܽ݊݀		 
߲ଶ

߲ଶ√ܦ
ෑ݈݃ ݂



ୀଵ

൫ݕ ,ߙ,ߚ, ܿ൯ = ଶݑ−
൫1ߤ + ൯ߤܿ

൫1 + ൯ߤܿ
ଶ



ୀଵ

 

 
 
Therefore, at D = 0 the score statistic becomes 

S(β, α, c) = 
∂l୧(β,α, c)

∂D

୩

୧ୀଵ

│D = 0 

As in Jacqmin- Gadda and commenges (1995), using Liang (1987) and Chesher (1984) and 

after evaluation of the partial derivatives, we obtain the score function evaluated under the null 

hypothesis of homogeneity. The score test statistic for testingH: D = 0	for the known nuisance 

parametersγ	and	c are as follows. 

ܵே(ߙ,ߚ, ܿ) =
1
2൞

݈߲݃ ݂

ߙ߲
,ߙ,ߚ) ܿ)



ୀଵ



ଶ

+ 
߲ଶ݈݃ ݂

ଶߙ߲
,ߙ,ߚ) ܿ)



ୀଵ

ൢ


ୀଵ

 

Where 

݈߲݃ ݂

ߙ߲
,ߙ,ߚ) ܿ) = ቆ

ݕ − ߤ
1 + ߤܿ

ቇ 	ܽ݊݀	


ୀଵ

߲ଶ݈݃ ݂

ଶߙ߲
,ߙ,ߚ) ܿ) = −

൫1ߤ + ൯ݕܿ

൫1 + ൯ߤܿ
ଶ ൩



ୀଵ

 

Therefore, the score test statistic will be 

ܵே(ߙ,ߚ, ܿ) =
1
2൞

൫ݕ − ൯ߤ
൫1 + ൯ߤܿ



ୀଵ



ଶ

−
൫1ߤ + ൯ݕܿ

൫1 + ൯ߤܿ
ଶ



ୀଵ

ൢ


ୀଵ

 

Then the score test statistic for testing H: D = 0	for the known nuisance parameters γ	and	c is  

ேܪ = ܵேଶ(ߙ,ߚ, ܫ)/(ܿ −  (3) ...........................................................(்ܣଵିܤܣ

Now, the asymptotic variance as k → ∞,ofS(β, α, c) under H (Cox and Hinkley, 1974) is 

ܫ = ܫ − ܫWhere  ்ܣଵିܤܣ = ∑ ܧ ቂడ
డ
ܦ│ = 0ቃ

ଶ

ୀଵ is a scalar andܣ =  ,[ଶܣ,ଵܣ]

ଵܣ = ܧ൬
߲݈
൰ܦ߲ ൬

߲݈
൰ߛ߲ ܦ│` = 0൨ is	a1 × ) + 1)vector,



ୀଵ

 

ଶܣ = ∑ ܧ ቀିడ
మ

డడ
ܦ│ = 0ቁ

ୀଵ is	a	scalar, 
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ܤ = ܤଵଵ ଵଶܤ
ଶଵܤ ଶଶܤ

൨ ଵଵܤ, = ܧ ൬
߲݈
௦ߛ߲

൰൬
߲݈
ߛ߲

൰ ܦ│` = 0൨


ୀଵ

)ܽݏ݅ + 1) × ) +)matrix 

ଵଶܤ = ଵଶܤ = 	ܧ ൬
߲݈
൰൬ߛ߲

߲݈
߲ܿ൰ ܦ│` = 0൨



ୀଵ

	is	a	( + 1) × 1	vector 

andܤଶଶ = ܧቆ
−߲ଶ݈
߲ܿଶ ܦ│ = 0ቇ isa		scalar.



ୀଵ

 

2.3. Parametric Estimation of the Score test Based on the Multilevel Negative 
Binomial Model  
Now we need to evaluate the variance of the score function (S) defined as 

		Var(S) = Iୈୈ − ABିଵA. The i୲୦ summand of 		Iୈୈ can be written as  

ܧ ൬
߲݈
ܦ߲ ܦ│ = 0൰

ଶ

=
1
ܧ4 ൞

൫ݕ − ൯ߤ
൫1 + ൯ߤܿ



ୀଵ



ଶ

−
൫1ߤ + ൯ݕܿ

൫1 + ൯ߤܿ
ଶ



ୀଵ

ൢ

ଶ

 

Where   

ܽ = 
൫ݕ − ൯ߤ
൫1 + ൯ߤܿ



ୀଵ



ଶ

	and ܾ = 
൫1ߤ + ൯ݕܿ

൫1 + ൯ߤܿ
ଶ



ୀଵ

 

To derive quantitative such asܧ(ܽ)ଶ, we need some basic moment results from the 

NB ቀμ୧୨, cቁdistribution. Letܷ = ൫௬ೕିఓೕ൯
൫ଵାఓೕ൯

. Then it can be shown that the first four cumulates of U are 

݇ଵ = 0, ݇ଶ =
ߤ

൫1 + ൯ߤܿ
, ݇ଷ =

൫ߤ + ଶߤ2ܿ ൯

൫1 + ൯ߤܿ
ଶ , ݇ସ =

൫ߤ + ଶߤ6ܿ + 6ܿଶߤଷ ൯

൫1 + ൯ߤܿ
ଷ  

Appling the first four cumulates results we obtain 

(ଶܽ)ܧ = 
ߤ + ଶߤ6ܿ + 6ܿଶߤଷ + 6ܿଷߤସ

൫1 + ൯ߤܿ
ଷ + 3ቆ

ߤ
1 + ߤܿ

ቇ
ଶ

൩


ୀଵ

 

 

ܽ)ܧ ܾ) = 
ߤ൫ߤ + ߤܿ + ଶߤ2ܿ + 3ܿଶߤଶ + 2ܿଷߤଷ + ܿଶߤଷ ൯

൫1 + ൯ߤܿ
ସ



ୀଵ

 

and 

)ܧ ܾ
ଶ) = 

൫ߤଶ + ܿଶߤସ + ܿଶߤଷ + ܿଷߤସ + ଷߤ2ܿ ൯

൫1 + ൯ߤܿ
ସ ൩ + ቈ

ߤߤ `
൫1 + ൯൫1ߤܿ + `൯ߤܿ




`ஷ



ୀଵ



ୀଵ

 

Finally, we obtain the variance of the score function(S) as follows  
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ܧ ൬
߲݈
ܦ│ܦ߲ = 0൰

ଶ

=
1
4
ቐ

൫ߤ + ଶߤ6ܿ + 6ܿଶߤଷ ൯

൫1 + ൯ߤܿ
ଷ



ୀଵ

+ 3ቆ
ߤ

1 + ߤܿ
ቇ
ଶ

ୀଵ

− 2
ߤ൫ߤ + ߤܿ + ଶߤ2ܿ + 3ܿଶߤଶ + 2ܿଷߤଷ + ܿଶߤଷ ൯

൫1 + ൯ߤܿ
ସ ൩



ୀଵ

+ 
൫ߤଶ + ܿଶߤସ + ܿଶߤଷ + ܿଷߤସ + ଷߤ2ܿ ൯

൫1 + ൯ߤܿ
ସ ൩ + ቈ

`ߤߤ
൫1 + ൯൫1ߤܿ + ߤܿ `൯




`ஷ



ୀଵ



ୀଵ

ቑ 

Now, 
߲݈(ߙ,ߚ, ܿ)

ߛ߲ │ୀ = ቈቆ
ݕ − ߤ
1 + ߤܿ

ቇ ܹ `


ୀଵ

 

Then 

ܧ ൬
߲݈
൰൬ܦ߲

߲݈
൰ߛ߲ ܦ│` = 0൨ =

1
2

ߤ
൫1 + ൯ߤܿ

`ݓ


ୀଵ



ୀଵ

 

hence we obtain  

ଵܣ =
1
2

ߤ
൫1 + ൯ߤܿ

`ݓ


ୀଵ



ୀଵ

 

And we need also to evaluate Aଶ 

߲݈(ߙ,ߚ, ܿ)
ܦ߲ │ୀ =

1
2

ቐቆ
ݕ − ߤ
1 + ߤܿ

ቇ
ଶ

ୀଵ

+ 
൫ݕ − `ݕ൯൫ߤ − ߤ `൯
൫1 + ൯൫1ߤܿ + `൯ߤܿ



`ஷ



ୀଵ

−
൫1ߤ + ൯ݕܿ

൫1 + ൯ߤܿ
ଶ



ୀଵ

ቑ


ୀଵ

 

Then  

ቆ
−߲ଶ݈(ߙ,ߚ, ܿ)

߲ܿܦ߲ │
ୀ

ቇ

=
1
2

ቐ−
ݕ൫ߤ2 − ൯ߤ

ଶ

൫1 + ൯ߤܿ
ଷ



ୀଵ

−
ߤߤ `൫ݕ − ݕ൯൫ߤ ` − `൯ߤ

൫1 + ൯ߤܿ
ଶ൫1 + ߤܿ `൯

ଶ



`ஷ



ୀଵ



ୀଵ

− 
൫1ݕߤ + ൯ߤܿ − ଶߤ2 ൫1 + ൯ݕܿ

൫1 + ൯ߤܿ
ଷ



ୀଵ

ቑ 

Therefore  

ଶܣ =
1
2ቆ

ߤ
1 + ߤܿ

ቇ
ଶ

ୀଵ

ଵଵܤ		݀݊ܽ = ቆ
ߤ

1 + ߤܿ
ቇ



ୀଵ

ݔ`ݔ



ୀଵ

 

The diagonal elements of ܤଵଶ and  ܤଵଶwill be zero. We now obtain		Bଶଶ. The partial 

derivatives of the log likelihood function of the negative binomial with respect to c is given by 
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൬
߲݈
߲ܿ ܦ│ = 0൰ =  ൬

݈
1 + ݈ܿ൰ −

൫ݕ + ܿିଵ൯ ቆ
ߤ

1 + ߤܿ
ቇ+ ܿିଶ݈݃൫1 + ൯ߤܿ

௬ೕିଵ

ୀ




ୀଵ



ୀଵ

 

ቆ
߲ଶ݈
߲ܿଶ ܦ│ = 0ቇ = − ൬

݈
1 + ݈ܿ൰

ଶ

+ 2ܿିଷ݈݃൫1 + ൯ߤܿ −
2ܿିଶߤ
൫1 + ൯ߤܿ

−
ଶߤ ൫ݕ + ܿିଵ൯

൫1 + ൯ߤܿ
ଶ

௬ೕିଵ

ୀ




ୀଵ



ୀଵ

 

Following Fisher (1941) and collings (1981) the above equations can be simplified as  

ܧ ቆ−
߲ଶ݈
߲ܿଶቇ = ܿିସ

݈! ൫ܿݍ൯
ାଵ

(݈ + 1)݀
+

ܿଶߤ
1 + ߤܿ

−
ܿଶߤ

1 + ߤܿ

∞

ୀ

൩


ୀଵ



ୀଵ

 

Thus  

ܧ ቆ−
߲ଶ݈
߲ܿଶቇ = ܿିସ

݈! ൫ܿݍ൯
ାଵ

(݈ + 1)݀

∞

ୀ

൩


ୀଵ



ୀଵ

 

Where ݍ = ఓೕ
൫ଵାఓೕ൯

and݀ = ∏ (1 + ݆ܿ)
ୀଵ . 

The regression (ߛ) parameter and dispersion(c) parameter inܪே given equation (4.4) are 

replaced by their maximum likelihood estimates, obtained from the negative binomial regression 

model under the null hypothesis (see Lawless (1987)).  The score test statistic H then reduce to 

ቆ∑ ቊ∑ ൫௬ೕିఓೕ൯
൫ଵାఓೕ൯


ୀଵ ൨

ଶ
− ∑

ఓೕቀଵା௬ೕቁ

൫ଵାఓೕ൯
మ


ୀଵ ቋ

ୀଵ ቇ
ଶ

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

ଵ
ସ
∑

⎣
⎢
⎢
⎢
⎡ ∑

ቀఓೕାఓೕ
మ ାమఓೕ

య ቁ

൫ଵାఓೕ൯
య


ୀଵ + 3∑ ൬ ఓೕ

ଵାఓೕ
൰
ଶ


ୀଵ −

2∑ ቈ
ఓೕቀఓೕାఓೕାଶఓೕ

మ ାଷమఓೕ
మ ାଶయఓೕ

య ାమఓೕ
య ቁ

൫ଵାఓೕ൯
ర 

ୀଵ

∑ ቈ
ቀఓೕ

మ ାమఓೕ
ర ାమఓೕ

య ାయఓೕ
ర ାଶఓೕ

య ቁ

൫ଵାఓೕ൯
ర 

ୀଵ

+∑ ∑ ൬ ఓೕఓೕ`
൫ଵାఓೕ൯൫ଵାఓೕ`൯

൰
`ஷ


ୀଵ ⎦

⎥
⎥
⎥
⎤


ୀଵ

−

⎣
⎢
⎢
⎢
⎡൬ଵ
ଶ
∑ ∑ ఓೕ

൫ଵାఓೕ൯ ܹ `
ୀଵ


ୀଵ ൰ ൬∑ ∑ ൬ ఓೕ

ଵାఓೕ
൰

ୀଵ ݔ`ݔ
ୀଵ ൰

ିଵ
൬ଵ
ଶ
∑ ∑ ఓೕ

൫ଵାఓೕ൯ ܹ `
ୀଵ


ୀଵ ൰ `

+ ቆଵ
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Now the maximum likelihood estimate of γ can be estimated iteratively by fisher`s scoring method 

from the following equations.  

(௧ାଵ)ߛ = [(ܹܳିଵ்ܹ)ିଵܹܼܳ](௧), t = 1, 2,3,…., where ܳ = ݀݅ܽ݃ ቀ ఓෝ
ଵାఓෝ

ቁ is an N×N matrix andܼ =

ො(௧ାଵ)ߛ்ܹ + ିఓෝ
ఓෝ

, t = 1, 2, 3,…, is an N×1 vector. Fisher`s scoring equation to estimate c is given 

byܿ(௧ାଵ) = ܿ(௧) + ቂܤଶଶିଵ ቀ
డ
డ
ቁቃ

(௧)
, where l is the log likelihood function given byHwith ܦ = 0.Note 
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that these two equations must be solved simultaneously to get the maximum likelihood estimates of 

the parameters γ  and c under the null hypothesis. 

2.4. Fisher Scoring Method for the Estimation of ࢼ and the Dispersion Parameter 

C 

Define the function


= ߤ݈݃ . Then, 
డ

ೕ

డఓೕ
= ଵ

ఓೕ
  , also let ܸ = ൯ݕ൫ݎܸܽ = ߤ + ଶߤܿ . 

Further we defineݓ = ൭ డఓೕ
డ

ೕೕ

൱
ଶ

ܸ
ିଵ = ఓೕ

൫ଵାఓೕ൯
. Then the score equation forݏߚ, s=1, 2…p. can be 

written as ݑ௦ = ∑ ∑ ൬ ఓೕ
൫ଵାఓೕ൯

൰൬௬ೕିఓೕ
ఓೕ

൰
ୀଵ


ୀଵ ܫ௦And the fisher information matrix for βisݔ =

ܧ ቀ− డమ
డఉೄఉೝ

ቁ = ∑ ∑ `ݔ௦ݔݓ
ୀଵ


ୀଵ .Nowwe	deϐineݑ = ൫ݑଵ,ݑଶ,ݑଷ, …  ,`൯ݑ,

ݕ = ൫ݕଵଵ , … , ଵభݕ , … , ,ଵݕ … ߤ	.`ೖ൯ݕ, = ൫ߤଵଵ, … , ଵభߤ , … ଵߤ, , … , ೖ൯` andܰߤ = ∑ ݊
ூୀଵ . 

Further, let x be a ܰ ×ܰ diagonal matrix with elementsݓ . Then the score equations in vector 

notation can be written asݑ = ܺ`ܹቀିఓ
ఓ
ቁand the fisher information matrix can be written as	ܫ =

(ܺ`ܹܺ).The fisher scoring equations for solving for the regression parameters β become 

(௧ାଵ)ߚ(௧)ܫ = (௧)ߚ(௧)ܫ + (௧ାଵ)ߚ(ܹܺ`ܺ),(௧)ݑ = ܺ`ܹܼ. 

Thus ߚ(௧ାଵ) = ൫(ܺ`ܹܺ)൯ିଵ(ܺ`ܹܼ)` … … … … … … … … … … … … … … … … (5) 

Where t=0, 1, 2… andܼ = ܺ`ܹ ቀିఓ
ఓ
ቁ.The Fisher scoring equation to solving for c is 

ܿ(௧ାଵ) = ܿ(௧) + (௧)ݑିଵܫ … … … … … … … … … … . (6) 

Whereܫ = ܧ ቀ− డమ
డమ

ቁ and ݒ = డ
డ

 as defined before, the maximum likelihood estimates of β and c 

are obtained by iterating between equations(5) and (6) after putting in initial values.  

3. SIMULATION STUDY  
In this section we consider a simulation study and assumed thatthe random effect is the 

intercept(ݖ = 1). Wegeneratedsets of count data viathe multilevel NB distribution of the response 

variable with different number of groups and individuals according to the variance (D) of the group-

specific random effects and for different values of the over dispersion parameter c. The sample 

comprised k = 5,10,20,50 groups with ݊ = 10,20,50	ܽ݊݀	100 observations. Each simulated 

experiment for level and power was based on 10000 simulated samples. The following log-linear 

model for the response variable is considered. 
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log	(ߤ) = ଵݔ0.8 + ݑ0.5 − 1.5 … … … … … … … … … … (4.8) 

For i =1, 2… k and j = 1, 2… in .The variable ݔଵ is subjected-specific effect and ݑis the group 

specific effect simulated from a standard normal distribution. To simulate correlated data, we added 

a group specific random intercept in the model for the response variable which isߙ = ߙ + ܦ
భ
మݑ, 

where, ݑis a random effect. Therefore, the random effects are normally distributed with mean ߙ and 

variance D. Our objective is to test the power of the proposed score test and to compare the proposed 

model with the standard NB regression model. Table 1 displays the goodness of fit test for the 

proposed model when the data are simulated from theNB distribution under the hypothesis of 

homogeneity with common overdispersion parameter c. 
Table1: The goodness of fit tests of the multilevel NB and NB models via simulated data 

Group(k) Observation(n) Model -2loglikelihood AIC BIC 
5 10 Multilevel  NB model 129.2 137.2 138.4 

NB model 111.1 117.1 122.9 
20 Multilevel  NB model 248.1 256.1 260.1 

NB model 256.1 262.1 270 
50 Multilevel  NB model 608 616 623.7 

NB model 614.8 620.8 631.3 
100 Multilevel  NB model 1175.5 1183.5 1194 

NB model 1253.4 1259.4 1272.1 
10 10 Multilevel  NB model 243.4 251.4 252.6 

NB model 234.9 240.9 248.8 
20 Multilevel  NB model 521.7 529.7 533.6 

NB model 447.2 453.2 463.1 
50 Multilevel  NB model 1315 1323 1330.4 

NB model 1194.8 1200.8 1213.4 
100 Multilevel  NB model 2524.7 2532.7 2542.9 

NB model 2424.5 2430.5 2445.2 
20 10 Multilevel  NB model 531.5 539.5 540.7 

NB model 460.9 466.9 476.8 
20 Multilevel  NB model 999.3 1007.3 1011.3 

NB model 1003.7 1009.7 1021.6 
50 Multilevel  NB model 2533.8 2541.8 2549.5 

NB model 2383.8 2389.8 2404.5 
100 Multilevel  NB model 4453.7 4461.7 4472 

NB model 4794.3 4800.3 4817.1 
50 10 Multilevel  NB model 1336.2 1344.2 1345.4 

NB model 1250.2 1256.2 1268.8 
20 Multilevel  NB model 2374.6 2382.6 2386.6 

NB model 2324.2 2330.2 2344.9 
50 Multilevel  NB model 6566.5 6574.5 6582 

NB model 6648.2 6654.2 6671.6 
100 Multilevel  NB model 11898 11906 11916 

NB model 11984 11990 12010 

In the Table 1 we investigated how the information criteria perform the model selection 

problems via simulations. The result revealed that AIC was superior to BIC in all the sample data set. 
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When the sample size was large, except (k=10) the multilevel NB regression model is better than the 

NB regression model, where as in small sample size the NB regression model is better than the 

multilevel NB regression model. From the simulations results we found that the performance of the 

criteria depends on sample size and model complexity. 
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Figure 1. Goodness of fit tests of the NB and MNB models via simulated data 

From Table 2 note that as type I error probability increases power increases and also as the 

number of observations in each group increases power increases. When the values of D increases 

from 0.15to 0.40 the power decreases. 

Table 2: Empirical power of the score test based on 1000 replications generated from the multilevel ZINB 

model under the hypothesis of homogeneity 
Cluster 
(k) 

Subjec
t 
(n) 

D=0.05 D=0.10 D=0.15 
Significance level Significance level Significance level 
α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 

5 10 0.99889 0.99696 0.98330 0.99487 0.99487 0.97448 0.93093 0.87852 0.70945 
20 0.99968 0.99903 0.99348 0.98300 0.96446 0.88280 0.91172 0.84997 0.66291 
50 0.98788 0.97371 0.90699 0.99748 0.99361 0.96954 0.97386 0.94800 0.84372 
100 0.99786 0.99448 0.97294 0.98512 0.96842 0.89292 0.98068 0.96020 0.87226 

10 10 0.99327 0.98447 0.93826 0.99956 0.99870 0.99168 0.97943 0.95791 0.86673 
20 0.98980 0.97745 0.91741 0.98763 0.97323 0.90568 0.98525 0.96867 0.89356 
50 0.99261 0.98310 0.93403 0.99892 0.99703 0.98364 0.99343 0.98481 0.93933 
100 0.99761 0.99391 0.97067 0.98276 0.96401 0.88168 0.97592 0.95162 0.85197 

20 10 0.99972 0.99914 0.99413 0.99994 0.99978 0.99816 0.99940 0.99828 0.98955 
20 0.99622 0.99076 0.95908 0.99911 0.99751 0.98583 0.99999 0.99995 0.99950 
50 0.99268 0.98326 0.93453 0.98622 0.97050 0.89838 0.98468 0.96760 0.89080 
100 0.99439 0.98682 0.94574 0.99324 0.98441 0.93808 0.97896 0.95706 0.86471 

50 10 0.9688 0.93931 0.82463 1.00000 0.99998 0.99980 0.99751 0.99366 0.96973 
20 0.99346 0.98486 0.93948 0.99993 0.99977 0.99808 0.99779 0.99433 0.97232 
50 0.99742 0.99347 0.96899 0.98938 0.97663 0.91510 0.97439 0.94893 0.84583 
100 0.99617 0.99065 0.95867 0.98731 0.97259 0.90397 0.97162 0.94408 0.83500 
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Figure 2. Empirical power of the score test of the MNB model via simulation 

4. APPLICATION STUDY  
In this chapter, we focused on multilevel negative binomial regression model to take account 

of the coefficient of regression and random parameters in NB counts with overdispersion. For 

estimating the parameters of a score test, we used an EM algorithm in the multilevel NB regression 

model against the standard NB regression model, and for testing the significance of regression 

coefficients. The demographic and health related survey of Ethiopia (EDHS) data is used to illustrate 

the proposed score test. The number of children deaths is an outcomevariableand the others nine are 

predictor’s variables. 
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Table 3: FittedMultilevel NB Model with covariates via EDHS 

Number of 
children  

Negative Binomial Multilevel negative binomial 
Estimate  S.E Z-value p-value Estimate S.E. Z-value P-value 

Residence .4442592    .0303513     14.64    0.000 * .2629343    .0341172     7.71    0.000 * 
Educ. level .0057544    .0033045      1.74    0.082     .004331    .0033312     1.30 0.194      
Toiletfac .0619004     .001014     61.05    0.000* .0621577    .0010159    61.19    0.000 * 
Religion -.049073    .0025395    -19.32 0.000* -.0483643    .0026752   -18.08    0.000 * 
HHSMembers -.6220319    .0279866    -22.23    0.000 * -.612779     .028402    -21.58    0.000 * 
Age mother .4740397    .0168476     28.14    0.000 * .4060037    .0201374     20.16    0.000 * 
Current Mari -.0154326     .098995     -0.16    0.876     .0183504    .0995902     0.18    0.854     
Agemarriage .0615666    .0163336      3.77    0.000 * .0012938    .0166597     0.08    0.938     
Sourcdrinkwat -.0129167    .0231555     -0.56    0.577     -.0179391    .0237627    -0.75    0.450     
Constant -2.173634    .0830942    -26.16    0.000  * -1.788503    .1096869   -16.31    0.000* 
/lnalpha -.6424236    .0263217                       -.7008252    .0272103   -25.76 0.000* 
alpha  .526016    1.026671   0.4961757 1.027584   
Region|var(cons)     .0479054    .0212992                        
LR test vs. Poisson model: chibar2(01) = 184.55       Prob>= chibar2 = 0.0000 
LR test of alpha=0: chibar2(01) = 3816.91              Prob>= chibar2 = 0.000 

*: Significant at 0.01levels. 

From Table3 explained those predictor variables significantly association with the outcome 

variable. It is observed that there exist significance differences between the  β coefficients of these 

two models for each of the explanatory variables except education level, current marital status of 

women, age of mothers for first marriage, and sources of drinking water were found to be significant 

variation in the deaths of children among  regions. In the multilevel NB analysis, a two-level 

structure is used with regions as the second-level unit and children as the first-level unit. The nesting 

structure is children within regions that resulted in a set of 11 regions with a total of 25420 mothers. 

A chi-square test statistic was applied to assess heterogeneity between regions. The test yield LRT = 

184.55, P < 0.000. Thus, there is evidence for heterogeneity among regions with respect to deaths. 

The difference in β coefficients estimated from a multilevel negative binomial model and the 

standard negative binomial model arises because of the addition of the random effects. The analysis 

of the random intercept parameter result revealed that deaths of children varied among regions.In the 

estimate of ߪ௨ଶ is 0.05 with standard error 0.02. The estimate of the variance component ߪ௨ଶdrops 

down to 0.05 compared with multilevel Poisson model, which is not surprising given that now we 

have additional parameters that control the variability of the data. Because the conditional over 

dispersion ߙ is assumed to be greater than 0, it is parameterized on the log scale, and its log estimate 

is reported as/ lnalpha in the output. In our model ߙො = exp(−0.64) = 0.53.we can also compute the 

conditional over dispersion in this model by using the corresponding formula exp(0.05) ∗ (1 +

0.53) − 1 = 0.61. The reported likelihood ratio test showed that there is enough variability between 

regions to favour the a multilevel negative binomial model over NB model without random effects. 
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Table 4: Goodness of fit tests of the NB and multilevel NB models via EDHS, 2005 
Model Obsll(null ll(model) df AIC BIC 
Multilevel NB - -34673.53 12 69371.05 69468.77 
NB -38532.49 -34855.01 11 69732.03 69821.6 

The multilevel negative binomial model can be considered as a parametricversion of 

assessing heterogeneity among regions with respect to Death`s of children.Moreover, based on the 

AIC values,themultilevel NB model is better than NB model. 

Table 5: The observed and predicted probabilities of  the fitted  models via EDHS 
Number of  
Children Death 

Observed 
frequency  

Observed probability  Predicted probability  
Negative Binomial  
Model 

Multilevel Negative Binomial 
Model 

0 12000 0.472069237 0.31454695 0.311111111 
1 5680 0.223446105 0.221168436 0.224713805 
2 3560 0.140047207 0.198307401 0.200808081 
3 1880 0.073957514 0.109837762 0.111245791 
4 1140 0.044846577 0.070427066 0.070841749 
5 500 0.019669552 0.033427988 0.033670034 
6 320 0.012588513 0.024511177 0.024579125 
7 80 0.003147128 0.005419803 0.004915825 
8 120 0.004720692 0.007900621 0.007676768 
9 40 0.001573564 0.00283033 0.002424242 
10 40 0.001573564 0.005210895 0.004040404 
11 20 0.000786782 0.001710156 0.001818182 
13 20 0.000786782 0.000530449 0.00047138 
18 20 0.000786782 0.004170959 0.003232323 

The predicted probabilities for NB and the multilevel NB regression model are presented in 

Table 5 and Fig 3. To check the analysis, whether  the negative binomial and the multilevel negative 

binomial regression model would fit the data better, we fitted the maximum likelihood of the 

parameters and the maximized log likelihoods for them. From Fig 3, since the predicted probabilities 

from multilevel NB model is closer to the observed probabilities for each count. Then we conclude 

that the multilevel NB model is essentially more appropriate than the NB model for predicting the 

number of deaths of children in EDHS, Ethiopia. 

 

Fig 3. Compressions of Models with covariates via Predicted Probabilities 
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5. DISCUSSION AND CONCLUSION  
In the Table3, the multilevel NB regression model identified the variation among eleven 

regions in the deaths of children less than eighteen years.The results revealed that place of residences 

of mother, toilet facility, Religions, size of household members, age of mothers were found to bethe 

main determining factors for deaths of children under eighteen in Ethiopia. The likelihood ratio 

result showed that the predictors were significantly associated with the outcome variable (p<0.000). 

The level and power properties of the statistics, in general, 

remainsimilarirrespectiveofwhichmechanismofover- dispersion is use dtogeneratecountdata. 

Thisalsoseems tobetrueirrespectiveofwhethertheover-dispersionparameter c is varyingorconstant. For 

testinghomogeneitybetweenand within individuals forclusteredcountdatawithover-dispersion, our 

recommendation,then,istousethe multilevel NB model, so, the proposed model is more 

preferablethan the standard NB model. 
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