

Research article

Available online www.ijsrr.org ISSN: 2279–0543

International Journal of Scientific Research and Reviews

Studies of Some New Binuclear Metal(Ii)Complexes

Singh Santosh Kumar

Govt. SV. Inter College, Bangra, Jalalpur, Saran Email:-santoshsingh0010@gmail.comMob: - 09934857166

ABSTRACT

The ligand, H_4L° , H_4L^{m} and H_4L^{p} were obtained from the reaction of 1, 2-*Bis* (*o*-aminophenoxy) ethane, 1, 2-bis (*m*-aminophenoxy) ethane and 1, 2-bis (*p*-aminophenoxy)-ethane with 1-chloro-1, 2-dihydroximinopropane. The analytical data of $[Zn_2(H_3L^{\circ})_2(OAc)_2].H_2O$, $[Zn_2,(H_2L^m)_2(H_2O)_2].H_2O$ and $[Zn_2(H_3L^p)(OAc)_2]-2H_2O$ complexes indicate 2:2 metal to ligandStoichiometry. The brown-yellow colour of the Zn (II) complexes of H_4L° , H_4L^{m} and H_4L^{p} indicates that the ligands are in the (E, E)-form(anti form).

H NMR results:

Ligands H₄L, H₄L and H₄L along with their Zn (II) complexes have been characterized on the basis of H NMR spectral results in DMSO- d_6 . In the H NMR spectrum of H₄L⁰, there are deuterium exchangeable four signals at 12.08, 11.36, 1082 and 10.14 ppm, as singles, due to the –OH protons. In the ¹H NMR spectrum of H₄L^m, four signals are observed for the protons since the –OH protons of the oxime groups are non-equivalent. In H₄L^m, the chemical shifts of –OH protons are observed at about 11.92, 11.45, 10.89 and 10.07 ppm as singlets. In the ¹H NMR spectrum of H₄L^p, since the – OH protons of oximes are non-equivalent in the (E, E)-form, four peaks were observed for the protons. In this ligand, chemical shifts of –OH protons were observed around at 10.75, 10.50, 10.38 and 10.25Ppm as singlets. The singlet of these ligands, which belong to –OH, disappear after the addition of D₂O. A single chemical shift for the –OH proton indicates that the oxime groups prevail in the antiform.

KEYWORDS:

- o-aminophenoxy
- *m*-aminophenoxy
- *p*-aminophenoxy
- Zn (II) complexes
- DMSO- d_6

*Corresponding author

Dr. Santosh Kumar Singh

Govt. SV.Inter College, Bangra, Jalalpur, Saran Email:-santoshsingh0010@gmail.com Mob: - 09934857166

INTRODUCTION

In coordination chemistry, Schiff bases have a significant role as ligands still a century after their discovery. The importance of Schiff bases and their metal complexes are important owing to their biochemical, electrochemical, analytical, antifungal, antibacterial activities and redox catalysts. Schiff bases with NO donors have structural similarities with natural biological systems and imports in elucidating the mechanism of transformation and racemisation reaction in biological systems due to presence of imine (-N = CH) group, also the presence of nitrogen and oxygen donor atoms tunes the properties of the complexes to a great extent as effective and stereo specific catalysts for oxidation, reduction and hydrolysis, 2-Hydroxy Schiff bases and their metal complexes have been extensively studied and exhibit wide applications, especially in biological systems. The studies on binuclear metal complexes in which the two metal centres are held in close proximity have addressed ligand environment, redox behaviour, magnetic exchange interactions and spectroscopic properties; therefore these kinds of complexes still continue to play a very important role in our understanding of various aspects of coordination chemistry of metal. Also binuclear Schiff bases complexes have been found to be better catalysts than the mononuclear Schiff base complexes The present situation, as described above in the field of research of metal (II) coordination compounds, has prompted us to undertake a programme of work to synthesize and characterize a series of newnovel Schiff bases derived by condensing 1, 2-bis (o/m/p-aminophenoxy) ethane with 1, 2dihydroximino -1chlropropane along with binuclear zinc complexes.

MATERIALS AND METHODS

All reagents and chemical purchased from Aldrich-sigma were of analytical/spectroscopic grade and were used without further purification, Chemicals and solvents used for the preparation of Schiff base ligands and zinc (II) complexes are: 1, 2-*Bis*(*o*-aminophenoxy) ethane, 1, 2-*bis*(*m*-aminophenoxy) ethane, 1, 2-*bis*(*p*-aminophenoxy) ethane, 1, 2-*dihydroximino* 1-chloropropane⁷, zinc acetate, ethanol, diethyl ether, DMSO, DMF, acetone, ethyl acetate and chloroform. 1, 2 – *Bis*(*o/m/p*aminophenoxy) ethane have been prepared as per literature procedure¹⁻⁶ and reaction can be shown as follows:-

Synthesis of zinc (II) complexes:-

Synthesis of [Zn2 (H3L⁰)2 (OAc)2]H2O

The ligand H₄L^o (0.35g, 0.40 mmol) was dissolved in absolute ethanol (5mL). Solutions of Zn (OAc) ₂ (0.07g, 0.40mmol) in ethanol (5mL) was added drop wise to the ligand solution with continuous stirring at 50^oC. The colour of the solution immediately changed. The reaction mixture was stirred at this temperature for 2h and filtered and the precipitate was washed with water, ethanol and diethyl ether and finally dried in vacuum at 60 $^{\circ}C^{8-10}$. It was analysed as Zn₂ (C₄₄H₅₂N₁₂O₁₇) to give analytical results as follow:

Elements	Found%	Calculated%
Zinc	11.32	11.34
Carbon	45.62	45.80
Hydrogen	4.49	4.50
Nitrogen	14.50	14.57

Synthesis of [Zn₂ (H₂L^m)₂ (H₂O)₂]2H₂O

The ligand H_4L^m (0.35g, 0.40 mmol) was dissolved in absolute ethanol (5mL). Solutions of Zn (OAc)₂ (0.07g, 0.40mmol) in ethanol (5mL) was added drop wise to the ligand solution with continuous stirring at 50^oC. The colour of the solution immediately changed. The reaction mixture was stirred at this temperature for 2h and filtered and the precipitate was washed with water, ethanol and diethyl ether and finally dried in vacuum at $60^{\circ}C^{8-10}$. It was analysed as Zn₂ (C₄₀H₅₂N₁₂O₁₈) to give analytical results as follow;

Elements	Found%	Calculated%
Zinc	11.65	11.67
Carbon	42.78	42.82
Hydrogen	4.61	4.63
Nitrogen	14.96	14.98

Synthesis of [Zn₂ (H₃L^p)₂ (OAc)₂]2H₂O

0.40mmol) in ethanol (5mL) was added drop wise to the ligand solution with continuous stirring at 500C. The colour of the solution immediately changed. The reaction mixture was stirred at this temperature for 2h and filtered and the precipitate was washed with water, ethanol and diethyl ether and finally dried in vacuum at 60 $^{\circ}$ C. It was analysed asZn₂ (C₄₄H₅₄N₁₂O₁₈) to give analytical results as follow;

Elements	Found%	Calculated%
Zinc	11.02	11.17
Carbon	44.92	45.09
Hydrogen	4.59	4.61
Nitrogen	14.20	14.35

Elemental analyses (C, H, N) were performed on a Leco932 CHNS-O elemental analyses apparatus. IR spectra were recorded on a Perkin-Elmer precisely spectrum one spectrometer as KBr pellets. ¹H NMR spectra were recorded on Bruker GmbH DPX-300 MHz high performance digital FT-NMR spectrometers (DMSO-d₆). Electronic spectra were obtained on a Shimadzu UV-1700 spectrometer. Magnetic susceptibilities were determined on a Sherwood scientific magnetic susceptibility diamagnetic corrections were calculated from Pascal's constants¹¹. Melting points were determined on a Gallenkamp melting points apparatus TGA and DTA curves were recorded on a Shimadzu DTG-60AH and DSC-60A thermo balance, respectively.

RESULTS AND DISCUSSION

The ligand, H_4L° , H_4L^{m} and H_4L^{p} were obtained from the reaction of 1, 2-Bis (*o*aminophenoxy) ethane, 1, 2-bis (*m*-aminophenoxy) ethane and 1, 2-bis (*p*-aminophenoxy)-ethane with 1-chloro-1, 2dihydroximinopropane. The analytical data of $[Zn_2(H_3L^{\circ})_2(OAc)_2].H_2O$, $[Zn_2,(H_2L^{m})_2(H_2O)_2].H_2O$ and $[Zn_2(H_3L^{p})(OAc)_2]-2H_2O$ complexes indicate 2:2 metal to ligand stoichiometry. Additional analytical data are given in Table.

ANAYTICAL A	ND PHYSICAL I	DATA O	N LIGA	NDS A	VD Z	II) C	OMPLE	XES	
Compounds	Empirical	f.w.	Colour	m.p°.	Yield	Ele	mental a Found.	inalysis (Calcd	(%)
	formula	g/mol		C	(%)	Zn	C	Н	z
H4L ⁰	C ₂₀ H ₂₄ N ₆ O ₆	444	Light Yellow	125	73.55		53.98 (54.05)	5.38 (5.40)	18.86 (18.92)
[Zn2 (H3L°)2(OAc)2].H2O	Zn ₂ C ₄₄ H ₅₂ N ₁₂ O ₁₇	1152.80	Dark Yellow	300 ^d	70.53	11.32 (11.34)	45.62 (45.80)	4.47 (4.50)	14.55 (14.57)
H4L ^m	C ₂₀ H ₂₄ N ₆ O ₆	444	Dark Yellow	110	82.77		53.97 (54.05)	5.36 (5.40)	18.88 (18.92)
[Zn ₂ (H ₂ L ^m) ₂ (H ₂ O) ₂].2H ₂ O	Zn ₂ C ₄₀ H ₅₂ N ₁₂ O ₁₈	1120.08	Yellow	290 ^d	51.22	11.65 (11.67)	42.78 (42.82)	4.60 (4.63)	14.94 (14.98)
H4L ^p	$C_{20}H_{24}N_6O_6$	444	Brown	150	59.80	•	53.96 (54.05)	5.37 (5.40)	18.87 (18.92)
[Zn ₂ (H ₃ L ^p) ₂ (OAc) ₂].2H ₂ O	Zn ₂ C ₄₄ H ₅₄ N ₁₂ O ₁₈	1170.8	Light Brown	300 ^d	78.49	11.02	44.92 (45.09)	4.58 (4.61)	14.20 (14.35)

d: decomposition.

IJSRR, 8(1) Jan. –March, 2019

H NMR results:

The H NMR spectral results obtained for H_4L° , H_4L^m and H_4L^p with their Zn (II) complexes in DMSOd₆, together the assignments, are given in Table. In the¹H NMR spectrum of H_4L° , there are deuterium exchangeable four signals at 12.08, 11.36, 1082 and 10.14 ppm, as singles, due to the – OH protons. In the ¹H NMR spectrum of H_4L^m , four signals are observed for the protons since the – OH protons of the oxime groups are nonequivalent⁴⁻⁶. In H_4L^m , the chemical shfts of –OH protons are observed at about 11.92, 11.45, 10.89 and 10.07 ppm as singlets. In the 1H NMR spectrum of H_4L^p , since the –OH protons of oximes are non-equivalent in the (E, E)-form, four peaks were observed for the protones¹⁻³. In this ligand, chemical shifts of –OH protons ewer observed around at 10.75, 10.50, 10.38 and 10.25 ppm a singlets the singlets of these ligands, which belong to –OH, disappear after the addition of D₂O. A single chemical shift for the –OH proton indicates that the oxime groups prevail in the antiform¹⁻³. In ¹H NMR spectra of H_4L° , H_4L^m and H_4L^p the deuterium exchangeable protons of NH group appear as singlets at $\delta=6.44$ and 6.19 ppm for H_4L° , at $\delta=6.49$ and 6.11 ppm for H_4L^m , at $\delta=5.75$ and 5.44 ppm for H_4L^p .

In the 1H NMR spectrum of $[Zn_2 (H_3L^o)_2(OAc)_2]$ -H₂O, $[Zn_2 (H_2L^m)_2(H_2O)_2]$ -2H₂O and $[Zn_2 (H_3L^p)_2(OAc_2)_2]$ -2H₂O, only slight differences between those of the ligands $(H_4L^o, H_4L^m \text{ and } H_4L^p)$ and their Zn (II) complexes were observed while the chemical shift of D₂O exchangeable NH protons were observed at δ =6.63 and 6.49 ppm, as doublets, for $[Zn_2 (H_3L^o)_2(OAc)_2]$ -H₂O, at δ =6.58 and 6.41 ppm, as doublets, for $[Zn_2 (H_2L^m)_2(H_2O)_2]$ -2H₂O and at δ =6.73, 6.550, 6.33 and 6.49 ppm, as singlet's.

¹ H NMR SPECTRA	OF THE LIG	Tab ANDS (1	le-4.2 H4L°, H4L ^m	AND H4L	T UND (HEIR Zn ((11
Compounds	OH ^a	C-CH ₃	HC=N	Ar-CH	H-N	0-CH ₂	0H0
H4L ⁰	12.08, 1136, 1082, 1014 (4H. S)	9.0 (12H,s)	8.54, 8.13 (2H, s)	7.21-6.67 (8H, m)	6.44, 6.19 (2H,s)	4.72-1.12 (4H, m)	•
[Zn2 (H3L ⁰)2(0Ac)2].H2O	112, 1147, 10.90, 1070 (4H.s)	9.1 (12H,s)	8.80, 8.33, 8.10, 7.75 (4H.s)	7.30-6.70 (16H, m)	6.63, 6.49 (4H, d)	4.70-1.18 (8H, m)	15.31 (2H, s)
H4L ^m	11.92, 11.45, 10.89, 10.07, (4Hs)	9.2 (12H,s)	8.27, 7.96 (2H,s)	7.32-6.76 (8H, m)	6.49, 6.11 (2H,s)	4.27-1.18 (4H, m)	
[Zn ₂ (H ₂ L ^m) ₂ (H ₂ O) ₂].2H ₂ O	11.78, 10.70, (2H,s) .	9.0 (12H,s)	8.89, 8.45, 7.78, 7.50 (4H.s)	7.27-6.68 (16H, m)	6.58, 6.41 (4H, d)	4.23-1.07 (8H, m)	18.11 (2H, s)
H4L ^P	10.75, 1050, 10.38, 10.90 (4H.s)	9.1 (12H,s)	8.75, 8.31 (2H, s)	7.12-6.50 (8H, m)	5.75, 5.44 (2H, s)	4.62-1.12 (4H, m)	
[Zn ₂ (H ₃ L ^p) ₂ (OAc) ₂].2H ₂ O	11.85, 10.85, 10.38, 10.04 (4H. s)	9.0 (12H,s)	8.38, 8.23, 8.12, 792	7.68-7.25 (16H, m)	6.73, 6.50, 6.33, 5.69	4.49-1.10 (8H, m)	14.99 (2H, s)

IR Results:

The characteristic infrared spectrum data are given in Table and representative spectrum of one of the ligand H_4L° and its Zn (II) complexes is shown in figs.

The broad bands within the range 3423-3247 cm⁻¹ for H_4L° , 3370-3203 cm⁻¹ for H_4L^{m} and 3400-3208 cm⁻¹ H_4L^{p} can be attributed to stretching vibrations of free v (OHNH) and intermolecular H-bonding. The observed negative shift of v (C=N) stretching in the IR spectra of $[Zn_2(H_yL^x)_2X_2]nH_2O$ complexes (x: o, m and p; y=3, 2, 3; X: OAc, H₂O and OAc; n: 1, 2 and 2,

respectively) 1599, 1596 and 1641-1604 cm⁻¹, respectively, relative to free H₄ L^x ligands 1615, 1593 and 1670 cm⁻¹. Respectively, indicates the participation of the azomethine nitrogen and/or oxygen atoms of ligands in coordination with the Zn (II) ion. The IR spectra of $[Zn_2 (H_2L^x)_2X_2]$ -nH₂O metal complexes were characterized by the appearance of significant absorption bands in the region 1690, 1684 and 1739 cm⁻¹, respectively, due to v(O-H^{...}O)⁹.

					- C. J.		
P) AND	V(M-H ₂ O)		ı		847		•
ND H₄L	ν _s (COO ⁻)		1347				1367
°, H₄L" /	ν _{as} (COO ⁻)	ı	1536				1552
DS (H4L S	V (N-O)	1053	1055	1074	1077	1067	1062
OF LIGAN OMPLEXE	V (C=N)	1615	1599	1603	1585	1570	1641-1604
, Cm ⁻¹) n (II) C	V (O-H O)		1638	ı	1634	1	1680
IN KBr HEIR Z	V (N-H)	3247	3376	3060	3060	3208	3197
ANDS (TH	V (H ₂ O/OH)	3370	3360	3375	3323	3385	3390
CHARACTERISTIC IR E	Compounds	H4L ⁰	[Zn ₂ (H ₃ L°) ₂ (OAc) ₂].H ₂ O	H4L ^m .	[Zn ₂ (H ₂ L ^m) ₂ (H ₂ O) ₂].2H ₂ O	H4L ^p	[Zn ₂ (H ₃ L ^p) ₂ (OAc) ₂].2H ₂ O

3: symmetric, as:asymmetric.

The broad bands within the range 3423-3247 cm⁻¹ for H_4L° , 3370-3203 cm⁻¹ for H_4L^{m} and 3400-3208 cm⁻¹ H₄L^p can be attributed to stretching vibrations of free v (OHNH) and intermolecular Hbonding. The observed negative shift of v (C=N) stretching in the IR spectra of $[Zn_2(H_vL^x)_2X_2]nH_2O$ complexes (x: o, m and p; y=3, 2, 3; X: OAc, H_2O and OAc; n: 1, 2 and 2, respectively) 1599, 1596 and 1641-1604 cm⁻¹, respectively, relative to free H₄ L^x ligands 1615, 1593 and 1670 cm⁻¹. Respectively, indicates the participation of the azomethine nitrogen and/or oxygen atoms of ligands in coordination with the Zn (II) ion. The IR spectra of $[Zn_2 (H_3L^x)_2X_2]$ -nH₂O metal complexes were characterized by the appearance of significant absorption bands in the region 1690, 1684 and 1739 cm^{-1} , respectively, due to v(O-H^{...}O)⁹. A sharp band observed between 1078-1053 cm⁻¹ in ligands and Zn (II) complexes are assigned to the v (N-O) vibration. The shifts of N-O absorbance to lower energy are consistent with the protonation occurring at the hydrogen-bridged oxime oxygen atoms, yielding a covalent O-H bond. The formation of O-H bands results in the removal of electron density from N-O bondand corresponding increase in the No bond length and decreased NO stretching vibration¹⁰. The v (O-H) stretching band observed at 3423, 3370 and 3400 cm⁻¹ in the IR spectrum of H_4L° , H_4L^{m} and H_4L^{p} , respectively, together with the existence of a H-bridge v (N-O) stretching in the IR spectra of the $[Zn_2(H_3L^0)_2 OAc)_2]-H_2O$, $[Zn_2(H_2L^m)_2(H_2O)_2]-2H_2O$ and $[Zn_2(H_3L^p)_2(OAc)_2]-H_2O$. $2H_2O$ complexes provide support for MN₄O₂-type, MN₃O₃-type and MN₂O₂-type coordination in the complexes, respectively.

ACKNOWLEDGEMENT

I express my deep sense of gratitude to my guide and supervisor **Dr. D. K. Singh**, Associate Professor & Head, P.G. Department of Chemistry, Rajendra College, J. P. University, Chapra for providing me available laboratory and library facilities and his inspiring guidance, invaluable suggestions and constant encouragement throughout the tenure of my research work. I am also grateful to Dr. (Prof.) U. S. Yadav, Head, P.G.Department of chemistry, J. P. University, Chapra for his cooperation and valuable suggestion given to me during the course of carrying out the experimental work. I must here acknowledge my deep debt of gratitude to Dr.(Prof.) S. N. Vidyarthi, Ex. Head, P. G. Department of Chemistry, J. P. University, Chapra for continued encouragements due to which, I could be able to finish this work. I am also thankful to all non-teaching members of P. G. Department of Chemistry, Rajendra College, J.P. University, Chapra for their continuous help and decorous behavior given to me throughout the research work.

REFERENCES

- 1. S. Duman and M.Sekerci, National Chemistry Congress, Elazig, Turkey 2009; 239.
- 2. H. Temel, U. Cakir, H.I. Ugras and M. Sekerci, J Coord. Chem, 2003; 56:943.
- 3. S. Duman and M.Sekerci, XXII, National Chemitry Congress. 2008; 133.
- 4. S. J. Lippard, A. R. Burger, K. Ugurbil, J. S. Valentine and M. W. Pantoliano, Adv. Chem. Soc., 1977; 162: 251.
- 5. J. P. Fackier, Prog. Inorg. Chem. 1966; 7:361.
- 6. G. J. Bullen, R. Mason and P. Pauling, Inorg. Chem. 1965; 4:456.
- 7. M. J. Bennett, F. A. Cotton, R. Eiss and R. Elder C., Nature, 1967; 213: 174.
- 8. F. A. Cotton and J. S. Wood, Inorg. Chem., 1964; 3: 245.
- 9. E. L. Lippert and M. R. Truter, J. Chem. Soc. 1960; 4996.
- 10. D. P. Graddon and D. G. Weeden, Austr. J. Chem., 1963; 16: 980.
- 11. B. P. Block, S. H. Rose, C. W. Schumann, E. S. Roth and
- 12. J. Simkin, J. Am. Chem. Soc. 1962; 84:3200.
- 13. F. Giordano, L. Randaccio and A. Ripamonti, Chem. Communs. 1967; 19
- 14. R. West and Hsien Ying Niu, J. Am. Chem. Soc. 1963; 85:2586
- 15. M. D. Glick, G. L. Downs and L. F. Dahl, Inorg. Chem. 1964; 3: 1712.
- 16. R. J. Berni, R. R. Benerito, W. M. Ayres and H. B. Jonassen, J. Inorg. and Nuclear Chem. 1963; 25: 807.