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1. INTRODUCTION 

 In the study of queue networks one typically tries to obtain the equilibrium distribution of the 

network, although in many applications the study of the transient state is fundamental. The transient 

response is necessarily tied to any event that affects the equilibrium of the system. 

 Multi-server queuing systems arrive in congestion problems of telephone exchange and 

computer networks. A complete description of situations with such queuing analysis of computer 

systems can be found in Lavenberg 
14

. In many real multi-server queuing situations, the service with 

heterogeneity is a common feature. The heterogeneous servers to the waiting lines are analyzed by 

Gumbel.H 
3
. The role of quality and service performance is crucial aspects in customer perceptions 

and firms must dedicate special attention to them with designing and implementing their operations. 

For these reasons, the queues with heterogeneity have received considerable attention in the 

literature. Transient solution of a two processor heterogeneous system has been discussed by 

Dharamaraja.S 
6
. A control model for a machine center with two heterogeneous system has been 

introduced by Liu and Kumar 
7
. A treaties on the Theory of Bessel functions where discussed by 

Watson. G. N 
8
. Whitt. W 

9
 has analyzed the Untold Horrors of the Waiting Room: What the 

Equilibrium Distribution Will Never Tell about the Queue Length Process. A research on Measures 

for Time Dependent Queueing Problem with Service in Batches of Variables Size was done by Garg. 

P. C 
10

. 

 In recent times, queuing model with catastrophes has been investigated by Boucherie and 

Boxma 
11

, Jain and Sigman 
13

 and Dudin and Nishimura 
12

. Transient solution of a single server 

queue with catastrophes are discussed by Kumar,B.K and Arivudainambi.D 
4
. An analysis made on 

the queuing network model with catastrophes and its product from solution by Chao.X 
5
. The 

catastrophes may come either from outside of the system or from another service station of the 

system. 

 A combined analysis of queues with heterogeneous servers subject to catastrophes to find 

transient solution of an M/M/2 model by Kumar.B.K, Pavai.M and Vankatakrihnan 
1
. Transient 

solution of a Markovian queuing model with heterogeneous servers and catastrophes has been 

discussed by Dharmaraja and Rakesh Kumar 
2
. 

From the output of this study, the queueing system is organized as follows:  

(i) To describe the queueing model of four server heterogeneous system with catastrophes 

and to derive the time-dependent state probabilities for the system size,  

(ii) To analyze the steady state probabilities of the system size and then 

(iii) Approach few important performance measures that are derived from the system size    

probabilities. 
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2. MODEL DESCRIPTION 

 By examining on M/M/4 queuing system with heterogeneous servers and assume that the 

servers times follow exponential distributions with the service rates as 4321 ,,,  and  for four 

different servers where 4321   . Consider the customer arrival process in Poisson with 

rate  and system also has one waiting line. FCFS queuing discipline is followed and each customer 

requires exactly one server for the service. When the server becomes free, the customer who is first 

in the waiting line will join the queue. Other than arrival and service processes, there also occur 

catastrophes at the service facilities with rate   in a Poisson manner. In the system, whenever a 

catastrophe occurs it destroys all the customers in the system immediately, and also the server get 

inactivated. Then the service is started when a new arrival occurs. Let   ttX ,  be the number 

of customers in time t. Let      ,6,5,4,  nntXtn  denotes the probability of n customers in 

the system at time t. Also let     00  tXt  be the probability that the system is empty at time t, 

    11  tXt  be the probability that there is one customer in the system,     22  tXt  be 

the probability that there are two customers in the system, and     33  tXt  be the probability 

that there are three customers in the system. 

 From the above assumptions the state probabilities 

          6,5,4,,,, 3210  ntandtttt n  satisfy the following system of differential difference 

equations: 

 
      ttt

dt

td
0110

0 1 


                                                                                      (2.1) 

 
         ttt

dt

td
221011

1 


                                                                  (2.2) 

 
         ttt

dt

td
33211221

2 


                                                  (2.3) 

 
         ttt

dt

td
4432123321

3 


                                 (2.4) 

 
         ttt

dt

td
54321344321

4 


                         (2.5) 

 
          ,6,5,1432114321 


 nttt

dt

td
nnn

n   (2.6) 

 

Suppose at time t=0 there is no customer in the system, so that   10  t . By using a 

probability generating function technique the above system of equations are solved. By letting,                                                                   
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0

1

50,
n

n

n zttGtz                                                     (2.7) 

where             ttttttG 432100  , with initial condition   10,  z . 

Apply the standard generating function argument, the system of equations 2.1 to 2.6 then 

yields  

                    
 

             tGtz
z

ztztG
t

tz
040 ,11

,

















        (2.8) 

where .4321    

Examine equation 2.8 as a first order linear differential equation in  tz,  and solving, we get , 

                             



t

utBBt dueuBGuzuGetz
0

040 11,                                 (2.9) 

where  







 




z
zB  

By utilizing the Bessel function generating function, if 



  and2 , then  

  















n

n

n

t
z

z

ztIe 




 

where  .nI  is the modified Bessel function of first kind of order n.  

Equating this in equation 2.9, then expanding  tz,  as a series in z  and comparing the co-efficient 

of nz  on either side, we get for ,3,2,1n  

 

 

                         
 

dueutIutIu
utbt

nn

n




 
0

1

14   

                            
 

dueuGutbIutIutI
utbt

nnn
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0

01

1

1            (2.10) 

where  b  and further, when n=0, we get 

 

                       
 

dueutIutIu
utbt 

 
0

014                                                       

                        
 

dueuGutIbutI
utbt 



 
0

00

1

12                                             (2.11) 

where we have used    .. nn II  . 

           


 
t

utbnbt dueutIuGetItG
0

0000 1 
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Since  tz,  does not contain terms with negative powers of z, the right hand side of 2.10 

with n replaced with –n must be zero. Thus, 

 

 

                         
 

dueutIutIu
utbt

nn

n




 
0

1

14   

                            
 

dueuGutbIutIutI
utbt

nnn

n






 
0

01

1

1            (2.12) 

Utilizing equation 2.12 in 2.10, after some algebraic manipulation, we obtain for n=1,2,3,… 

 

                           (2.13) 

 

So far, the probabilities          tandtttt 43210 ,,,   remain to be found. To find, we 

consider the system of equations 2.1 to 2.4 subject to condition 2.11. Equations 2.1 to 2.4 can be 

expressed in matrix from as 

 

                                    
 

    241 etet
dt

td



                                                              (2.14) 

where            ttttt 3210 ,,, ,   0,0,0,11e  and   1,0,0,02e , 

 

 

 

 





































321

32121

211

1

00

0

0

00

 

In continuation, let  sn

*
  denote the Laplace transform of  tn . Now, by taking Laplace 

transforms, the result of 2.14 is obtained as 

                                                     




















2

*

41

1* 1 ese
s

sIs 


                                (2.15) 

with     0,0,0,10                                                                                                                 (2.16) 

Hence, only  s*

4  is to be found. We note that, if   1,1,1,1e ,                               

                                                   ssesG
*

4

**

0  
                                     (2.17) 

Taking Laplace transforms, after simplification, equation 2.11 yields, 
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2
2

11 22*

4

*

0 


 s
ss

sG                    (2.18) 

where   s  

Utilizing 2.18 in 2.17 and solving for  s*

4 , we obtain 

 

                                   
    

        2

122

1

1

*

4

2

1

11

essIes

essIe
s

s























          (2.19) 

Let      
44

*1




 smsI ij

 

It is easy to see that, 
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sgsisgsisg

sI
2111

23

41111333

2

421213

4211211312131

1 







               

  (2.20) 

where     11 ssg ;         212 ssg ;         3213 ssg ;                    

               ssf ;            432   sgsgsi  ;            2121   sgsgsj . 

and 

             322321

2

321

34 232234   sssD               

               223232211 233  s                           

                       312121132111

2 72233    

                         21

2

1322113211

2 8224   

                      13121

2

1

22

32

2
33222   

                 2

3132121

2

1    

The characteristics roots of the matrix   are given by 

                                                                            0D                                                        (2.21) 

By defining, 
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            211322321 32324
16

1
a  

                2

321 234    

           322321

3
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1
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2
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2

1
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2
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3

1

2
cos

3

1
2

a

b
andan  , the characteristic roots of 2.21 are 
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3
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3

2
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It is examined that  smkj

*
 are all rational algebraic functions of s . Then, the inverse transform 

 tmkj
 of  smkj

*
 is obtained by partial fraction decompositions. Since the characteristics roots 

4,3,2,1, isi  of   are all real and distinct,  tmkj
 is the inverse transform of  smkj

*
, which are 

given by, 
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From the matrix 2.20, we achieve, 
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Utilizing equation 2.20 in 2.15, we have 
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From matrix theory, the characteristic roots 4,3,2,1, isi  of   provided are all real and 
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where   ssnij '
*

 , denote the summation terms in the above expressions.  

 Applying these in equation 2.25 and after some algebraic manipulations, we will get 
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The previous equation can be expressed as, 
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Taking inversion on equations 2.26-2.29 and doing some algebraic operations, we get 
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Therefore, equations 2.13 and 2.31-2.35 completely determine all system size probabilities. 

3. STEADY STATE PROBABILITIES 

 This section deals with the structure of the steady state probabilities of the M/M/4 Queuing 

model with heterogeneous servers and its disasters. 

Theorem 3.1: The steady state distribution of the queuing system M/M/4 with heterogeneous 

service states and catastrophes is obtained as follows: 
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where  
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       21121  

 

Proof:     For 0  and    , from equation 2.23, we obtain 
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Multiplying on both sides with s and taking limit as 0s  to the above equation, we get 
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The solution 3.1 follows directly from 3.13, by using Tauberian theorem. 

 

Taking Laplace transform of 2.13, we have 
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As before, multiplying 3.14 by s on both sides and talking limit as 0s , we get 
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This yields 3.2, by applying Tauberian theorem again. 

Similarly, the results 3.3 – 3.6 can be obtained from 2.24 – 2.27 respectively. For 0  and  

   , the results 3.7 – 3.12 can be obtained directly by putting    in 3.1 – 3.6. 

Remark: It is observed that the steady-state probabilities of this queueing model exist if and only if  

0  or  0  and    . 

 

4. PERFORMANCE MEASURES 

 Few interesting performance measures, involving the mean number of customers in the 

system, the probability of arriving customers joining the queue, and the mean number of busy servers 

are to be analyzed. 

4.1. The Mean Number of Customers in the System 

 Let N(t) be the number of customers in the system at time t. the average number of customers 

in the system at time t is given by, 



Julia Rose Mary K.et al. IJSRR 2018, 7(4), 2084-2100 
 

IJSRR, 7(4) Oct. – Dec., 2018                                                                                                         Page 2097 
 







0

4321 )()4()()()())((
n

n tnttttNE  

Utilizing 2.13, 2.31, 2.32 and 2.33, the above equation can be written as 

        
t

o

t

o
duuutmduumtmtNE 4242121))((   

                             
t

o

t

o
duuutmduumtm 4343131   

                             
t

o

t

o
duuutmduumtm 4444141   

        
  

 
 






 




t
utbnn

n

due
ut

utI
unnt

0
4

1

4 )1()(4


                                             (4.1) 

where  t4  is given in 2.29 

Suppose 0 , the mean number of customers in the system under steady-state is computed as
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where 4 is given in 3.1 for    and in 3.7 for   . 

 

4.2. Probability of Arriving Customers Joining the Queue 

 The probability that an arriving customer is required to join the queue at time t is given by

 





0

4 )()4)((
n

n ttN

 

 

                                   
  

 
 






 




t
utbn

n

n due
ut

utI
unt

0
4

1

4 )(


                                         (4.4) 

Comparing, for 0 , the steady-state probability that an arriving customer joins the queue is 



Julia Rose Mary K.et al. IJSRR 2018, 7(4), 2084-2100 
 

IJSRR, 7(4) Oct. – Dec., 2018                                                                                                         Page 2098 
 

 























 
















if

if
b

N
n

n

,
4

2

,
4

2

)2(

2

4

2

4

0

4
        (4.5) 

 

4.3. The Number of Busy Servers 

 Let B(t) denote the number of busy servers at time t. The probability that the system has n 

busy servers is given as, 
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and the corresponding steady-state probability is obtained for 0  and    as 
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Comparing the above probability, it can be obtained directly, for 0  and    by substituting 

   in 4.7. Furthermore, the mean number of busy servers at time t is given by 
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which can also be written as  
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If  0 , the corresponding steady-state solution is given as 
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The above probability for 0 and    can be obtained directly by substituting    in 4.9.  
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CONCLUSION 

 In the transient and steady-state analysis, a four heterogeneous server queueing system 

subject to catastrophes is constructed then the time-dependent probabilities for the number of 

customers in the system is obtained. The steady-state probabilities of the system size are also found. 

At last, few important performance measures have been extracted from the steady-state probabilities. 
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