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ABSTRACT 
Satellite and natural image denoising is significant for strengthening the visual quality of 

images and for smoothening further image processing and analysis. Designing of filter applying both 

low pass filters and high pass filters attracted researchers to explore its usefulness in various 

domains. Furthermore, Wiener filters analyzed the required signal based on the statistical parameters 

has become a conventional method employed for applications involving image denoising. Thus, 

reducing noise and improving image visual quality are vital to obtaining better image denoising. In 

this paper, a novel image denoising method for satellite and natural images, called, Filter Normalized 

Butterworth Wavelet Frame (FN-BWF) is presented. To start with preprocessing, Function-

approximate Discrete Wavelet Transform is applied to the input satellite and natural images with the 

objective of preserving the edges. Besides, a window centered positioning with function 

approximation is measured. With the function approximated resultant values, discrete wavelet 

transform is applied. Finally, image denoising is performed to the edge preserved images by applying 

Filter Normalized Butterworth Wavelet for the given samples. From the experimental results, it is 

shown that FN-BWF method significantly minimizes the noise and obtain lower-noise image. The 

results are compared to two popular denoising methods in the literature, namely Wiener filter based 

on the Adaptive Cuckoo Search (ACSWF) and Validation of Error Vector Magnitude (VEVM). 

Results analysis shows that the FN-BWF method performs better than ACSWF and VEVM in terms 

of peak signal to noise ratio, preprocessing time, average processing time for image denoising and 

image denoising accuracy. 

KEYWORDS:Wiener filters, image denoising, Filter Normalized, Butterworth Wavelet Frame, 

Function-approximate, Discrete Wavelet Transform. 
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INTRODUCTION  

Image denoising is the most prerequisite for improving the image visual quality and for 

easing further image processing and analysis tasks. Multi Spectral Imagery (MSI) is undeviatingly 

arising in its reputation as a digital means for sensing remote objects, analysis of terrain, signature 

detection and so on. Besides, wavelet representations have found suitable place in image denoising 

due to the reason that the natural images possess a specific statistical behavior in this domain. On the 

one hand, smoothness is denoted according to the strong energy compaction in coarse scales, while 

the integration of smooth regions with local, gives rise to sparse activation of wavelet sensors.  

Wiener filter based on the Adaptive Cuckoo Search (ACSWF)
 1

 as designed with the 

objective of denoising multispectral satellite images polluted with the Gaussian noise of several 

dissimilarity extents. The ACS algorithm was proposed for optimizing the Wiener weights. This was 

done so that the best probable calculations of the desired uncorrupted image could be obtained. To 

substantiate the performance and computational capability of ACSWF, both quantitative and 

qualitative comparisons were made.  

The key idea of the ACSWF method was to identify the best probable estimate of the original 

image. This was done via 2-D Finite Impulse Response (FIR) Wiener filtering. The 2-D FIR Wiener 

filter was designed in such a manner so that the window weights were modified in an adaptive 

manner. Further, the mean square error (MSE) between the desired image and the filter output was 

also investigated. Besides, the least possible mean squared error was ensured using the ACS 

algorithm that in turn optimizes filter weights. With this method, both the computational time and 

error was found to be significantly minimized while denoising satellite images. However, less focus 

was made on the image denoising accuracy.  

Many notable images comprises certain amount of noise, contains some extent of noise, 

which are either unaccountable or out of interest. If the noise present in these images is filtered, the 

process of image analysis is then said to be simplified. Validation of Error Vector Magnitude (EVM) 

using Butterworth and Chebyshev Filters to differentiate filters responding to industrial requirements 

in terms of time and cost was presented in
2
. The designing of the method was based on the 

Quadrature Phase Shift Keying (QPSK) that was sent through the Radio Frequency (RF) device, with 

the output being the frequency domain and time domain.  With this method, the response time was 

found to be reduced with higher sensitivity to error for RF device performance.  

In this paper, two novel solutions for satellite and natural image denoising are proposed. In 

the first solution, a window centered positioning is used as the basis to extract the slope values with 

which function approximation is performed for each samples with the aid of discrete wavelet 
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transform to minimizing the time while preserving the edges during preprocessing. In the second 

solution, with the edge preserved image given as input, a high pass filter employing Butterworth with 

Filter Normalization is applied to minimize the noise. With these function approximate filter 

normalization, the image denoising quality is said to be improved.   

The major contributions of this work are summarized as below. 

 The proposed Filter Normalized Butterworth Wavelet Frame (FN-BWF) method transforms to 

noisy satellite and natural images minimize the noise with higher accuracy rate. At first, the input 

noisy satellite and natural images are converted into edge preserved images in the preprocessing 

step. The FN-BWF method with the aid of slope values during preprocessing to preserve the edge 

based on the function approximation. The application of function approximation minimizes the 

preprocessing time.  

 The Filter Normalized Butterworth Wavelet Frame performs the image sharpening based on the 

cut off frequency obtained through Mutual Information. Based on the mutual information factor, 

the cut off frequency is arrived. Finally, image denoising is then performed by applying the 

Butterworth Wavelet Frame via high pass filter, resulting in minimizes the noise and improves 

the image denoising accuracy.     

The rest of this paper is organized as follows: Section 2 provides related works on Image 

Denoising methods provided by different researchers. Section 3 proposes Filter Normalized 

Butterworth Wavelet Frame (FN-BWF) transforms to noisy satellite and natural images. In Section 

4, experimental settings for the FN-BWF method are presented. In Section 5, the discussion with the 

table values and graph form is presented. Finally, Section 6 concludes the work. 

RELATED WORKS 

The application of partial differential equations has been largely studied in the literature due 

to their significant advantages in both theory and computation. In 
5
, a novel fractional diffusion-wave 

equation with non-local regularization method was applied for noise removal to enhance image 

structure. However, the images selected for denoising was found to be static.  

To address dynamic images, Non-local Maximum Likelihood (NML) method was applied in 

6
 where the samples were collected in an adaptive manner. Here, not only dynamic images were 

applied, image denoising was also performed in a significant manner. But, self-similarity test was not 

said to be ensured. To address this issue, rough set image based denoising was used in 
7
, resulting in 

the improvement of denoising accuracy.  

However, artifacts in denoised images were introduced due to the optimization techniques 

used in the previous works. In 
8
, an Evolved Local Adaptive (ELA) model was applied to perform 



Purushothaman D. et al, IJSRR 2018, 7(4), 1442-1461 

IJSRR, 7(4) Oct. – Dec., 2018                                                                                                         Page 1445 

 

natural image denoising. During the training process, a patch clustering model was deployed. 

Followed by which, genetic programming was applied for obtaining the optimal filter, therefore 

ensuring computational efficiency.  

Yet another image denoising method by applying Additive White Gaussian Noise (AWGN) 

model was introduced in 
9
 with the objective of improving peak signal to noise ratio. Despite 

accuracy and noise being improved, the computational time involved was not focused in the above 

said methods. To address this issue, discrete wavelet transform (DWT) was applied in
10

, therefore 

minimizing the computational time involved during preprocessing.  

Noise includes a random variation of color in image or otherwise referred to as the unwanted 

signals. The noise gets amalgamated with the original image, causing several troubles. As a result, 

with the presence of noise, image quality gets deteriorated affecting the edge sharpness and pattern 

recognition.  

In
11

, a hybridization technique was applied to reduce the peak signal to noise ratio. However, 

the edge enhancement was said to be badly affected. To address this issue, in 
12

, adaptive wavelet 

threshold shrinkage algorithm was applied to the color image, therefore resulting in superior color 

image denoising. In the current few years, the discriminative model learning for image denoising 

receiving attentions owing to its higher denoising performance.  

In 
13

, feed-forward denoising convolutional neural networks (DnCNNs) was investigated that 

involved very deep architecture, learning algorithm, and regularization method to achieve efficient 

image denoising. Besides, in DnNNs, residual learning and batch normalization were applied for 

higher convergence and improve the denoising performance. 

Yet another structure-based low rank method with graph nuclear normalization was 

investigated in 
14

 with the objective of performing Gaussian noise removal and mixed noise removal 

by applying local manifold structure. An extension of the Non-Local Means denoising method was 

investigated in 
15

 that used affine invariant self-similarities with the aid of real scenes. A better image 

denoising was said to be ensured by undergoing a transformation. 

Restructure the image that has been corrupted by Additive White Gaussian Noise (AWGN) 

and Impulse Noise (IN) is considered to be the most challenging issues to be handled due to its 

complications of the mixture noise. Several research works have been focused to initially identify the 

impulse noise location and then to restructure the clean image. In 
16

, an integrated noise removal 

model was designed on the basis of Laplacian Scale Mixture (LSM) and nonlocal low-rank 

regularization therefore adaptively characterizing the real noise.  

Yet another image denoising method was introduced in 
17

 by applying complex valued 

wavelet transform, therefore ensuring both quantitative and visual performance. Several research 
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works have been conducted for image denoising that not only suppresses the noise but also preserve 

the edge details. In 
18

, a constrained optimization approach was applied that combined multiple Non 

Local Means algorithm that greatly minimized parameter sensitivity and also improving the 

performance of denoising capacity. Yet another traffic image denoising was investigated in 
19

 using 

neighbourhood weight interpolation algorithm.  

The process of filtering out unwanted frequencies is referred to as filtering. The purpose of 

applying filtering for the given image is to process the image in such a manner that the image 

becomes more apt than the original image given as input. Besides, image filtering also involves the 

process of noise removal. In
 20

, image denoising was performed by applying Butterworth High Pass 

filter that not only removed the noise but also minimizing the time for noise removal.  

In this paper, we present an image denoising method for satellite and natural images based on 

the filtering algorithm. First, we use the Function-approximate Discrete Wavelet Transform to 

perform preprocessing so that edges are said to be preserved during the preprocessing state with 

minimum time and accuracy. Followed by this, with the edge preserved preprocessing satellite and 

natural images, Filter Normalized Butterworth Wavelet Frame is applied to denoise the image.  

FILTER NORMALIZED BUTTERWORTH WAVELET FRAME 

TRANSFORMS  TO SATELLITE AND NATURAL IMAGES 

In this paper, we present a new denoising method, which is based on the application of the 

Filter Normalized Butterworth Wavelet Frame (FN-BWF) transforms to noisy images. A family of 

statistical parameters for optimizing weight vectors in the space of obtaining best possible estimate 

of the original image belonging to the satellite images was presented in
1
. These frames, which are 

related to Wiener filters, were derived for ensuring the least possible mean square error. Though 

errors were reduced, the time consumed was found to be arbitrarily high. The filtering in
1
 was 

implemented in a linear mode. In this paper, we modify this construction in order to use the 

Function-approximate Discrete Wavelet Transform (FDWT). This modification adds flexibility to 

the implementation and enables to normalize the filtering functions without compromising the 

computational time involved during normalization.  

The idea behind the filter normalization is as given below. The application of the image 

sharpening filters optimizes the numerical differentiation by different orders. Typically, this image 

sharpening filter enhances the noise factor. These image sharpening filters is modified using a 

method that is based on Mutual Information
4
. The denoising procedure consists of subsequent 

application of the maximum relevancy and minimum redundancy between two pixel points 

according to the cut off frequency or threshold factor. Hence, the subsequent processing function is 
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said to be linear. As a result, significant noise suppression is said to be achieved while retaining the 

coherent structure of the image without creating artifacts.  

Motivated in part by Wiener filters and image pyramids and Butterworth, a novel image 

denoising method, called Filter Normalized Butterworth Wavelet Frame (FN-BWF) transforms is 

presented. Figure 1 show the proposed FN-BWF method with its two stages.  

Figure 1 proposed Filter Normalized Butterworth Wavelet Frame 

 

 

 

 

 

 

 

 

 

 

 

 

1. In the function approximate discrete wavelet stage, degree of certain pixel is first used to convert 

logarithmical transformation to obtain up, down, left and right  slope values is first used to 

extract the edge detected images with less time and computational overhead.  Then, a function 

approximation is applied to the original image and noise. To this, a discrete wavelet transform is 

applied wherein the edges of the input images (i.e. noisy images) are said to be preserved during 

preprocessing.  

2. In the noise reduction stage, image sharpening is said to be performed by applying appropriate 

filter, called Filter Normalized Butterworth. A cut off frequency with mutual information is 

applied to the images for reducing the noise (i.e. image denoising) present in the images. 

3. The combination of function approximation followed by filter normalizing procedure yields the 

noise reduction in satellite and natural images.  

The above stages are formulated in detail in the following subsection. 

a. Function-approximate Discrete Wavelet Transform preprocessing model  

In this work, Function-approximate Discrete Wavelet Transform (FDWT) preprocessing 

model is applied to the noisy image with the objective of not only minimizing the computational time 
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during preprocessing but also to preserve the edges during preprocessing. To achieve this objective, 

the preprocessing model in this work, includes a function-approximate with respect to a projection 

range „ ‟ for „ ‟ samples. Followed by this, a Discrete Wavelet Transform is applied to the 

approximated function value to restore the edges during preprocessing.  

The satellite 
1
 and natural images 

3
 are frequently corrupted by noise due to several factors, to 

name a few, being, image acquisition device, acquisition time and hence certain pixel values are 

certainly corrupted whereas certain other pixel values remain free from noise. However, while 

removing the noise, the edge should be preserved. In this work, not only noise removal is performed 

but also the edges of the noisy images are preserved, into account, therefore improving the image 

denoising accuracy.  

In this work, a noisy image „ ‟ with size „ ‟ pixels are extracted directly from satellite
1
 

and natural
3
 images and „ ‟ represents the pixel value at location 

„ ‟. In order to determine whether the pixel „ ‟ is corrupted with noise, a window centered 

at „ ‟ is represented as „ ‟, i.e., „ ‟ as illustrated in figure 2.   

Figure 2 : Window centered positioning 

 

 

 

 

 

 

 

 

 

As illustrated in the figure 2, for developing the noise detection, in the window „ ‟, the 

degree of certain pixel „ ‟ considered as noise. The four neighbors of „ ‟ correlates to the 

directions „ ‟ respectively. With this the slope values 

„ ‟ and „ ‟ of pixel values „ ‟ is mathematically 

measured as given below.  
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        (4) 

From the above equations (1), (2), (3) and (4), „ ‟, „ ‟, „ ‟ and 

„ ‟ represents the mean values of the pixel „ ‟. Figure 3 shows the Function-

approximate Discrete Wavelet Transform (FDWT) preprocessing model. 

Figure 3  Function-approximate Discrete Wavelet Transform preprocessing model 

 

 

 

 

 

 

 

 

 

 

 

As illustrated in the figure, with the noisy images obtained from the satellite and natural 

images, instead of obtaining the function value for any given set of images (i.e. samples) that is 

found to be time consuming process, the approximation function in this work measure one single 

function value. By including an approximation function, the computational time is said to be 

reduced. Therefore, a function-approximate DWT exploited in this work. It is mathematically 

expressed as given below. 

        (5) 

From the above equation (5), „ ‟ represents the approximation function of pixel values 

„ ‟, being a summation of the original image „ ‟ and noise „ ‟ with pixel values „ ‟ 

respectively. With the function approximate resultant values, the discrete wavelet transform for „ ‟ 

samples is obtained and is mathematically formulated as given below.  

     (6) 

From the above equation (6), the function approximate „ ‟ with discrete wavelet „ ‟ and 

projection range „ ‟ for „ ‟ samples is obtained using the function approximate noised values 

„ ‟ with respect to the overall samples. The pseudo code representation of Function-

approximate Discrete Wavelet Transform (FDWT) edge detection is given below.  
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Algorithm 1 Function-approximate Discrete Wavelet Transform (FDWT) edge detection 

Input: Original Image „ ‟, Noisy Image „ ‟, size „ ‟ pixels, samples „ ‟, noise „ ‟, 

projection range „ ‟ 

Output: Edge preserved image detection „ ‟ 

1: Begin 

2:For each noisy image „ ‟ with window „ ‟ for „ ‟ samples 

3: For pixel value at location „ ‟ 

4: Measure the up slope values using equation (1) 

5: Measure the down slope values using equation (2) 

6: Measure the left slope values using equation (3) 

7: Measure the right slope values using equation (4) 

8:Obtain function-approximate using equation (5) 

9: Obtain discrete wavelet transform for „ ‟ samples using equation (6) 

10: End for 

11:End for 

12: End 

 

As given in the above FDWT algorithm, for each noisy image „ ‟ with window 

„ ‟ and „ ‟ samples considered as input, the objective of the algorithm remains in preserving 

the edges of the input satellite and natural images during preprocessing. To achieve this objective, 

for each image corrupted with noise at pixel location „ ‟, the corresponding slope values 

towards the upward, downward, left and right direction are measured. With this, the edges of the 

input images (i.e. noisy images) are said to be preserved during preprocessing. Followed by this 

slope intercept identification, function approximate is done. The purpose of using the function 

approximate is rather than using the entire slope intercept values for a single noisy image, an 

approximated value is used so that the computation time involved during preprocessing is said to be 

reduced. 

FILTER NORMALIZED BUTTERWORTH WAVELET  

In order to reduce the noise present in the natural and aerial images, the most prerequisite is 

the appropriate selection of correct filtering function. Different filter types exist according to the 

preprocessed images. In this work, the focus behind preprocessing remains in preserving the edges, 

so Butterworth Filter is applied to the edge preserved images. Besides, image sharpening is 

performed that in turn emphasizes fine tuned image. Hence, to start with, image sharpening is 

performed with it, is mathematical formulation as given below.  
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         (7) 

         (8) 

From the above two equations (7) and (8), „ ‟ represents the cut off frequency (i.e. threshold 

factor) used to measure the adjacent pixels according to the distance „ ‟ between the pixel values 

„ ‟ and „ ‟. The cut off frequency or the threshold factor to measure the adjacent pixels is selected in 

this work based on the mutual information
4
. It is mathematically represented as given below.  

       (9) 

From the above equation (9), the mutual information for the cut off frequency is obtained 

according to the binary terms. The first term „ ‟ in the above equation  maximizes the 

relevancy of „ ‟ to „ ‟. The second term „ ‟ in the above equation minimizes the 

redundancy between „ ‟ and the already selected original image „ ‟. The balance between 

maximum relevancy and minimum redundancy is obtained via by the parameter „ ‟. Figure shows 

the resultant sharpened image for the edge preserved image via mutual information factor.  

 

 

 

 

 

 

Figure 4 Image sharpening for edge preserved image 
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the corresponding pixel value is said to be boosted. Finally, the function normalized (i.e. 

normalization of cut off frequency) of Butterworth high pas filter with cut off frequency „ ‟ and 

order „ ‟ is mathematically represented as given below. 

          (10) 
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From the above equation (10), „ ‟ represents the distance between the two pixel points 

„ ‟ to the center of the origin with „ ‟ representing the cutoff range from the origin. Then, the 

distance between the two pixel points „ ‟ with rows „ ‟ and columns „ ‟ is mathematically 

formulated as given below. 

        (11) 

The pseudo code representation of Filter Normalized Butterworth Image Denoising is given 

below.  

Algorithm 2 Filter Normalized Butterworth Image Denoising algorithm 

Input: Edge preserved image „ ‟, cut off frequency „ ‟, rows „ ‟, columns „ ‟ 

Output: Denoised images (Satellite and natural image) 

1: Begin 

2: For each Edge preserved image „ ‟ 

3: Perform image sharpening using equation (7) and (8) 

4:Measure cut off frequency using equation (9) 

5: Measure function normalization using equation (10) 

6:End for 

7: End 

 

As given in the above algorithm, with edge preserved image given as input, the objective of 

Filter Normalized Butterworth Image Denoising (FNBID) algorithm remains in denoising the image 

with higher accuracy and minimum time. These two objectives are said to be achieved by applying a 

filter normalized butterworth model. Initially, normalization of cut off frequency is evaluated. With 

this normalized cut off frequency, Butterworth high pass filter is applied to the input edge preserved 

image. With this image denoising is said to be achieved with higher accuracy, as because, instead of 

using the cut off factor in a random manner, a normalization factor is said to be found. This in turn 

improves the image denoising accuracy with minimum time consumption.  

EXPERIMENTAL SETTINGS  

In this section, a series of experiments are conducted to verify the efficiency and 

effectiveness of our image denoising algorithm. For comparison, Wiener filter based on the Adaptive 

Cuckoo Search (ACSWF) 
1
 and Validation of Error Vector Magnitude (Validation of EVM)

2
 are 

chosen for image denoising. Tests are conducted using satellite
1
 and natural images

3
 database.  

The satellite images are procured from several sources, such as Satpalda Geospatial Services, 

Satellite Imaging Corporation, and NASA. All the test images included in the study are MS images 

with four bands (blue: 430–550 nm; green: 500–620 nm; red: 590–710 nm; near IR: 740–940 nm). 

The natural images are selected from UPenn Natural Image Database, that include many snapshots of 

what a human observer might conceivably look at, such as images of the horizon and detailed images 
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of the ground, trees, bushes, and baboons and the defined testing method results are compared with 

existing method.  

The natural images were obtained from
3
. In order to perform image denoising with satellite 

and natural images, the proposed Filter Normalized Butterworth Wavelet Frame (FN-BWF) method 

is compared with two other existing methods, ACSWF
1
 and Validation of EVM

2
 using satellite and 

natural images. Experimental evaluation using FN-BWF method is conducted on various factors 

such as PSNR, average processing time (i.e. for image denoising) and image denoising accuracy with 

respect to different satellite and natural images.  

DISCUSSION  

To validate the efficiency and theoretical advantages of the Filter Normalized Butterworth 

Wavelet Frame (FN-BWF) method for image denoising using satellite and natural images with 

ACSWF
1
 and Validation of EVM

2
 performance evaluation results are presented. The parameters of 

the FN-BWF method are chosen as provided in the experiment section.  

IMPACT OF PSNR 

To measure the performance of FN-BWF method, three experiments are conducted. The first 

one is designed to measure the noise ratio caused by noisy satellite and natural images. One of the 

simplest ways to measure the noise during image denoising for satellite and natural images is 

measuring PSNR. Higher value of PSNR indicates higher natural image quality. The noise factor is 

measured according to the size of satellite and natural image in pixels. With denoising to be 

performed for satellite and natural images, it is analogous that a significant amount of noise is added 

to it. Besides, the noise should be imperceptible by Human Visual System (HVS). PSNR is used to 

measure the quality of the satellite and natural images. PSNR is mathematically formulated as given 

below.  

       (12)  

From the above equation (12), „ ‟ represents the peak signal level, whereas „ ‟ represents 

the Mean Squared Error
21

, which is the pixel value of the image. The value of MSE is 

mathematically formulated as given below.  

            (13)       

Where „ ‟ and „ ‟ are the pixel intensity values of the original image and the 

noisy image respectively and „ ‟ represents the size of input satellite and natural images. The sample 

calculation followed by graphical representation is given below. 
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Sample calculation 

 Proposed FN-BWF: With single (i.e. satellite) image given as input, the value of MSE being 

„ ‟, the PSNR is mathematically evaluated as given below. Then for „ ‟ images given as 

input, the PSNR is found to be „ ‟. In a similar manner, with single (i.e. natural) image 

given as input, the value of MSE being „ ‟, the PSNR is mathematically evaluated as 

given below. Then for „ ‟ images given as input, the PSNR is found to be ‟ ‟. 

 

 

 ACSWF: With single (i.e. satellite) image given as input, the value of MSE being „ ‟, the 

PSNR is mathematically evaluated as given below. Then for „ ‟ images given as input, the 

PSNR is found to be „ ‟. In a similar manner, with single (i.e. natural) image given as 

input, the value of MSE being „ ‟, the PSNR is mathematically evaluated as given below. 

Then for „ ‟ images given as input, the PSNR is found to be „ ‟. 

 

 

 Validation of EVM: With single (i.e. satellite) image given as input, the value of MSE being 

„ ‟, the PSNR is mathematically evaluated as given below. Then for „ ‟ images given as 

input, the PSNR is found to be „ ‟. In a similar manner, with single (i.e. natural) image 

given as input, the value of MSE being „ ‟, the PSNR is mathematically evaluated as 

given below. Then for „ ‟ images given as input, the PSNR is found to be „ ‟. 

 

 

Table 1 PSNR using Satellite and Natural images 

No. of 

images 

PSNR (using satellite images) PSNR (using natural images) 

FN-BWF ACSWF Validation of 

EVM 

FN-BWF ACSWF Validation of 

EVM 

10 85.7 74.8 66.3 92.9 80.49 70.7 

20 90.4 77.5 69.4 92.5 82.4 75.3 

30 91.3 80.2 70.2 93.2 84.3 79.4 

40 94.2 83.4 75.3 96.5 89.1 80.5 

50 96.5 85.5 80.4 98.3 80.3 78.4 
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60 85.4 75.2 70.2 87.1 82.5 74.3 

70 89.1 80.4 75.4 91.6 84.2 76.1 

80 90.4 85.3 80.1 92.3 86.3 85.4 

90 85.4 82.4 76.3 87.2 80.2 72.3 

100 90.4 85.5 77.1 88.4 84.1 71.5 

 

Table 1 given above presents the PSNR rate with respect to 100 different numbers of satellite 

and natural images used. From this table it is inferred that the PSNR rate is improved using the 

proposed FN-BWF method when applied with two different satellite and natural images. Several 

images are present in both the satellite and natural images, among them, 100 images are taken for 

observation. The PSNR is found to be higher when applied with the proposed FN-BWF method than 

ACSWF
1
 and Validation of EVM

2
 respectively. This is because of the application of Filter 

Normalized Butterworth Wavelet Frame in the FN-BWF method that filters the noisy portions and 

therefore improving the rate of PSNR. First, image sharpening is performed using mutual 

information. By performing image sharpening, the edge preserved images appear to be more defined 

by darkening the darker portions of images and brightening the brighter portions of images. As a 

result, the contrast of the image is said to be improved when applied with both satellite and natural 

images. Second, the cut off frequency is not selected in a random manner, but mutual information 

between the images and the adjacent pixels of the given input noisy satellite or natural images are 

used. This in turn improves the PSNR rate when both satellite and natural noisy images are provided 

as input.  With regard to the obtained results, the experiment with the best performance is FN-BWF 

method achieving PSNR greater than 11% compared to ACSWF
1
 and 22% compared to Validation 

of EVM
2
 with satellite images as input and 10% compared to ACSWF

1
 and 21% compared to 

Validation of EVM
2
 with natural images as input.  

a. Impact of average processing time 

The performance results in previous section have indicated that FN-BWF method is more 

effective than ACSWF and Validation of EVM in terms of PSNR. In this section, a comparative 

analysis of FN-BWF method with ACSWF and Validation of EVM is evaluated to measure the 

performance of average processing time. The average processing time measures the average time 

required to process an image (i.e. preprocessing and image denoising). The average processing time 

is the summation of time taken to preserve edge (i.e. preprocessing) and noise removal (i.e. image 

denoising). It is mathematically formulated as given below.   

     (14) 

From the above equation (14), the average processing time „ ‟ is obtained by applying 

the time taken for preprocessing „ ‟ and time taken for denoising „ ‟ 
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respectively with respect to the samples „ ‟ provided as input. It is measured in terms of milliseconds 

(ms).  The sample calculation is provided below, followed by which graphical representation is 

included.  

Sample calculation  

 Proposed FN-BWF: With „ ‟ satellite images given as input, the time consumed for 

preprocessing being „ ‟ and image denoising being „ ‟, the average 

preprocessing time is „ ‟. In a similar manner, with „ ‟ natural images given as input, 

the time consumed for preprocessing being „ ‟ and image denoising being 

„ ‟, the average preprocessing time is „ ‟. 

 

 

 ACSWF: With „ ‟ satellite images given as input, the time consumed for preprocessing 

being „ ‟ and image denoising being „ ‟, the average preprocessing time is 

„ ‟. In a similar manner, with „ ‟ natural images given as input, the time consumed for 

preprocessing being „ ‟ and image denoising being „ ‟, the average 

preprocessing time is „ ‟. 

 

 

 Validation of EVM: With „ ‟ satellite images given as input, the time consumed for 

preprocessing being „ ‟ and image denoising being „ ‟, the average 

preprocessing time is „ ‟. In a similar manner, with „ ‟ natural images given as input, 

the time consumed for preprocessing being „ ‟ and image denoising being 

„ ‟, the average preprocessing time is „ ‟. 

 

 

Table 2 Average processing time 

No. of 

images 

Average processing time (using satellite 

images) 

Average processing time (using natural 

images) 

FN-BWF ACSWF Validation 

of EVM 

FN-BWF ACSWF Validation of 

EVM 

10 1.67 2 2.27 1.84 2.3 2.58 

20 2.55 3.25 5.55 2.85 4.55 6.55 

30 4.89 5.66 7.85 5.66 6.89 8.95 

40 6.55 8.55 10.45 8.35 10.25 14.55 
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50 8.23 10.32 12.55 10.35 15.55 16.75 

60 7.45 8.15 15.55 12.25 18.25 20.32 

70 9.52 12.35 13.52 11.45 16.75 18.55 

80 12.55 14.55 14.65 15.55 20.25 25.55 

90 14.13 11.35 18.35 16.78 23.23 30.31 

100 10.25 15.55 22.55 18.51 25.55 32.44 

Table 2 given above illustrates the performance of FN-BWF method, ACSWF and Validation 

of EVM with respect to different number of satellite and natural images with varying sizes to 

measures the average processing time. From the table it is clear that the average processing time is 

not linear. This is because of the presence of noise is not similar for different images and varies. 

Hence, a non-linearity is found in the average processing time also. However, the average processing 

time is found to be lower using FN-BWF method when applied with both the satellite and natural 

images.  This is because of the application of two different algorithms, namely, Function-

approximate Discrete Wavelet Transform for preprocessing and Filter Normalized Butterworth 

Image Denoising (FNBID) algorithm for image denoising. By applying FDWT algorithm, during 

preprocessing, the edges are said to be preserved. Followed, by which when applied with the FNBID 

algorithm, denoising is said to be performed in an efficient manner. With the objective of preserving 

the edges during preprocessing, only the relevant portions of the images are said to be analyzed. 

Besides, with the edge preserved images, the non relevant portions of the images are not considered 

during image denoising. For that reason, the FN-BWF method produce a better solution, resulting in 

the improvement of average processing time than compared to ACSWF
1
 and Validation of EVM

2
. In 

this way, the average processing time is found to be improved by 15% compared to ACSWF and 

27% compared to Validation of EVM using satellite images. In a similar manner, the average 

processing time is found to be improved by 36% compared to ACSWF and 41% compared to 

Validation of EVM using natural images.  

b. Impact of image denoising accuracy 

Finally, the third parameter considered for experimentation is the image denoising accuracy. 

With this metric, the image quality is assessed. The image quality assessment is more efficient if the 

image denoising accuracy is found to be higher. The image denoising accuracy depends on the 

proper denoising of the image.  It is mathematically evaluated as given below.  

        (15) 

The image denoising accuracy „ ‟, is measured on the basis of number of images given 

as input „ ‟, and the images that are correctly denoised, „ ‟. The sample calculation is provided 

below, followed by which graphical representation is included.  
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Sample calculation 

 Proposed FN-BWF: With „ ‟ satellite images given as input and „ ‟ images being correctly 

denoised, the image denoising accuracy is as given below. 

 

 ACSWF: With „ ‟ satellite images given as input and „ ‟ images being correctly denoised, 

the image denoising accuracy is as given below. 

 

 Validation of EVM: With „ ‟ satellite images given as input and „ ‟ images being correctly 

denoised, the image denoising accuracy is as given below. 

 

Table 3 :Image denoising accuracy (for satellite images) 

No. of images Image denoising accuracy (for satellite images) 

FN-BWF ACSWF Validation of EVM 

10 80 70 60 

20 70 60 50 

30 70 60 50 

40 80 60 60 

50 80 70 60 

60 70 60 70 

70 60 50 50 

80 70 60 60 

90 80 60 60 

100 80 70 70 

Finally, the third goal of the experiment is addressed using the image denoising accuracy by 

showing the comparison between FN-BWF, ACSWF and Validation of EVM respectively.  In table 

3 the analysis of image denoing accuracy is illustrated with respect to number of images in the range 

of 10 to 100, involving different sizes. It is measured in terms of percentage (%). As provided in the 

table, the image denoising accuracy is not directly proportional to the number of satellite images 

provided as input. In other words, with the increase in the number of satellite images provided as 

input, the image denoising accuracy is not always increased or decreased. This is because of the 

varying noise level present in different images. However, comparative analysis shows betterment 

using the proposed FN-BWF method. This is because of three reasons. First, during preprocessing, 

the edges are preserved by applying the function approximation with respect to the samples provided 

as input. Next, with the edge preserved images, discrete wavelet transform is applied using the cut 

off frequency derived from the mutual information between pixels and the adjacent pixels. Due to 
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this, only the relevant pixel portions of the images with edges being preserved are obtained. Finally, 

to this, resultant images, filter normalized Butterworth is applied. With the normalization of filter, 

image denoising is said to be ensured using the FN-BWF method. This is due to the fact that FN-

BWF method considers both preserving the edge and noise removal, while ACSWF and Validation 

of EVM makes multiple passes in search of noise removal. As a result, the image denoising accuracy 

is improved by 20% compared to ACSWF and 26% compared to Validation of EVM respectively, 

when applied with satellite images.  

CONCLUSION  

In this work, Filter Normalized Butterworth Wavelet Frame (FN-BWF) transforms to noisy 

satellite and natural for image denoising is presented. The FN-BWF method first performs 

preprocessing with the objective of preserving the edges by applying the Function Approximation. 

With this objective, window centered positioning for each sample images are obtained by evaluating 

the slope values. This in turn minimizes the preprocessing time. Next, with the edge preserved 

images retrieved, Filter Normalized Butterworth Wavelet Transform is used to perform image 

denoising. Here, to the edge preserved images, image sharpening is performed so that image contrast 

is said to be achieved, that in turn helps in the process of image denoising. The image sharpening is 

performed according to a cut off frequency, different for different samples. This in turn minimizes 

the significant amount of noise and hence the peak signal to noise ratio is said to be improved. 

Finally, by applying the filter normalized Butterworth, denoising is said to be achieved in an efficient 

manner, therefore improving the rate of image denoising accuracy. Experimental results demonstrate 

that the proposed FN-BWF method not only leads to noticeable improvement over average 

processing time for image denoising, but also outperforms the image denoising accuracy for both 

satellite and natural images over methods, namely, ACSWF and Validation of EVM respectively.  
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