

Research article

Available online www.ijsrr.org

International Journal of Scientific Research and Reviews

Analysis of Complex Continued Fractions of The Solution of The Equation $kx^2 - nx + n = 0$ Where n Is An Odd Integer And $k = \left\lceil \frac{n}{2} \right\rceil$

Krithika S.*1 and Gnanam A.2

*1 Assistant professor, Department of Mathematics, Seethalakshmi Ramaswami College, Trichy-2.

2 Assistant professor, Department of Mathematics, Government Arts College, Trichy-22.

Email: krithikasrc@gmail.com, gnaanam@yahoo.com

Mobile no. 9443019706, 9994563563

ABSTRACT

In this paper we identify the complex continued fractions of the solution of the equation $kx^2 - nx + n = 0$ where n is an odd integer and $k = \left[\frac{n}{2}\right]$. The analysis of the complex continued fractions of the above equations when n > 3, n = 3 & k = n = 1 are found and their comparisons are made.

KEYWORDS: Continued fraction, Finite complex continued fraction, Infinite complex continued fraction, Periodic complex continued fraction, Gaussian integer, Euclidean algorithm, Quadratic irrational.

SUBJECT CLASSIFICATION: MSC 11A05, 11A55, 11J70, 11Y65, 30B70, 40A15.

S. KRITHIKA

Assistant Professor, Department of Mathematics,

Seethalakshmi Ramaswami College,

Thiruchirappalli, 620002, Tamil Nadu, India.

Email: krithikasrc@gmail.com, Mobile no. 944301970

ISSN: 2279-0543

I. BASIC DEFINITIONS 1,2

Let $C = \{z = x + iy/x, y \in R\}$ be the set of all complex numbers. Where x and y are called the real and imaginary parts of z. These are denoted by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively. The conjugate of the complex number z is denoted by $\overline{z} = x - iy$ and the modulus of z is denoted by $|z| = \sqrt{x^2 + y^2}$. Let $Z(i) = \{x + iy/x, y \in Z\}$ be the set of all Gaussian integers. Let $Q(i) = \{\frac{p}{q}/p, q \in Z(i) \text{ and } q \neq 0\}$ be the set of all complex rational numbers. So that $Z(i) \subset Q(i) \subset C$. Let $z \in C$ then z is rational if $z \in Q(i)$, z is irrational if $z \in C \setminus Q(i)$ and z is quadratic irrational if z is irrational and there exist $A, B, C \in Z(i)$ such that $Az^2 + Bz + C = 0$ and $A \neq 0$.

Greatest common divisor of any two complex numbers: 3, 4, 5

Let $z_1, z_2 \in Z(i), z_2 \neq 0$. Then the greatest common divisor of z_1 and z_2 is denoted by $\gcd(z_1, z_2)$ and it is defined to be a Gaussian integer g such that $g \mid z_1$ and $g \mid z_2$ and there is no Gaussian integer h such that |h| > |g| that divides both z_1 and z_2 . In this case we write $\gcd(z_1, z_2) = g$ If $x, y \in R$ then the floor function of x and y are denoted by [x] and [y] respectively. So that x - [x] < 1 and y - [y] < 1. Let $z \in C$. Then z is a quadratic irrational if and only is $z = \frac{p + q\sqrt{r}}{s}$ for some $p, q, r, s \in Z(i), q \neq 0, s \neq 0$ and r is not a perfect square.

II. INTRODUCTION

An expression of the form

$$a_{0} + \frac{e_{0}}{a_{1} + \frac{e_{1}}{a_{2} + \frac{e_{2}}{a_{3} + \frac{e_{3}}{a_{n} + \cdots}}}}$$

Where $a_0, a_1, a_2, a_3, \cdots$ are in Z(i) and e_i 's are units of complex numbers. Therefore $e_k \in \{1, -1, i, -i\}, k = 1, 2, 3, \dots$ is known as a complex continued fraction.^{6,7,8}

The complex continued fraction is commonly expressed as $a_0 + \frac{e_1}{a_1 + a_2 + a_3 + \cdots} = \frac{e_2}{a_1 + a_2 + a_3 + \cdots}$.

The quantities a_0 , $\frac{e_1}{a_1}$, $\frac{e_2}{a_2}$, $\frac{e_3}{a_3}$, \cdots are called the elements of the complex continued fraction.

In a finite complex continued fraction the number of elements are finite. Where as an infinite continued fraction have infinite number of quantities.

Therefore $a_0 + \frac{e_1}{a_1 + a_2 + \frac{e_2}{a_3 + \cdots + \frac{e_n}{a_n}}$ is known as finite complex continued fraction and an

expression $a_0 + \frac{e_1}{a_1 + a_2 + a_3 + \cdots + \frac{e_n}{a_n + a_{n+1} + \cdots}} \frac{e_{n+1}}{a_{n+1} + \cdots}$ is known as an infinite complex continued fraction. In

a finite or infinite complex continued fraction a_0 , a_1 , a_2 , a_3 , \cdots are called the partial quotients where as e_1 , e_2 , e_3 , \cdots are known as the partial numerators.

The length of a finite complex continued fraction $a_0 + \frac{e_1}{a_1 + a_2 + a_3} + \frac{e_2}{a_3 + a_3} + \cdots + \frac{e_n}{a_n}$ is n+1 and the

length of a infinite continued fraction $a_0 + \frac{e_1}{a_1 + a_2 + a_3} + \frac{e_2}{a_3 + a_3} + \frac{e_n}{a_n + a_{n+1}} + \cdots$ is ∞ . The value of the

finite complex continued fraction is denoted as $\left[a_0, \frac{e_1}{a_1}, \frac{e_2}{a_2}, \frac{e_3}{a_3}, \cdots \frac{e_n}{a_n}\right]$.

2.1 Convergent of complex continued fraction: 6,7,8

The successive convergent of the complex continued fractions are $\begin{bmatrix} a_0 \end{bmatrix}$, $\begin{bmatrix} a_0, \frac{e_1}{a_1} \end{bmatrix}$, $\begin{bmatrix} a_0, \frac{e_1}{a_1}, \frac{e_2}{a_2} \end{bmatrix}$

and so on and they are denoted by $c_0 = \frac{p_0}{q_0}$, $c_1 = \frac{p_1}{q_1}$, $c_2 = \frac{p_2}{q_2}$,... In general the *nth* convergent is

denoted by
$$c_n = \frac{p_n}{q_n} = \begin{bmatrix} a_0, \frac{e_1}{a_1}, \frac{e_2}{a_2}, \frac{e_3}{a_3}, \cdots \frac{e_n}{a_n} \end{bmatrix}$$
. Where p_i 's and q_i 's are called the numerators and

denominators of the complex continued fraction.

2.2 Properties of complex continued fraction: 6,7,8

Let $\left[a_0, \frac{e_1}{a_1}, \frac{e_2}{a_2}, \frac{e_3}{a_3}, \cdots \frac{e_n}{a_n}, \cdots\right]$ be an infinite complex continued fraction. We inductively

define two infinite sequences p_k and q_k where $k \ge 1$ by

$$\begin{aligned} p_0 &= a_0 & p_{-1} &= 1 & q_0 &= 1 & q_{-1} &= 0 \\ \\ p_k &= a_k \ p_{k-1} \ + e_k \ p_{k-2}, k \geq 0 & q_k &= a_k \ q_{k-1} \ + e_k \ q_{k-2}, k \geq 0 \end{aligned}$$

III. ALGORITHMS AND THEOREMS

3.1 Algorithm of complex continued fraction:9

Let $x \in C$. Suppose we wish to find continued fraction expansion of x, take $x_0 = \text{Re}(x) + i \text{Im}(x)$.

Let
$$a = \text{Re}(x) - [\text{Re}(x)]$$
 and $b = \text{Im}(x) - [\text{Im}(x)]$ so that $a < 0$ and $b < 0$. Now

$$[x_0] = [\text{Re}(x)] + i[\text{Im}(x)] + \alpha \text{ , a floor function. Where } \qquad \alpha = \begin{cases} 0 & \text{if } a+b < 0 \\ 1 & \text{if } a+b \geq 1 \text{ with } a \geq b \\ i & \text{if } a+b \geq 1 \text{ with } a < b \end{cases}$$

Set
$$a_0 = [x_0]$$
. Then $x_1 = \frac{1}{x_0 - [x_0]}$ and $[x_1] = [\text{Re}(x_1)] + i[\text{Im}(x_1)] + \alpha$.

Again set
$$a_1 = [x_1]$$
. Then $x_2 = \frac{1}{x_1 - [x_1]}$ and $[x_2] = [\text{Re}(x_2)] + i[\text{Im}(x_2)] + \alpha$, $a_2 = [x_2]$. Then

$$x_3 = \frac{1}{x_2 - [x_2]}$$
 and $[x_3] = [\text{Re}(x_3)] + i[\text{Im}(x_3)] + \alpha$, $a_3 = [x_3] \dots a_{k-1} = [x_{k-1}]$.

Then
$$x_k = \frac{1}{x_{k-1} - [x_{k-1}]}$$
 and $[x_k] = [\text{Re}(x_k)] + i[\text{Im}(x_k)] + \alpha$ and $a_k = [x_k]$.

The algorithm terminates if the complex continued fraction is finite otherwise it is no terminating.

3.2 Euclid's algorithm for complex continued fraction:[4]

Let $u_0, u_1 \in Z(i)$. Then we try to find the gcd (u_0, u_1) by using Euclid's algorithm.

Divide u_0 by u_1 if $N(u_0) > N(u_1)$, where N is the norm of the complex number.

Therefore $\frac{u_0}{u_1} = a_0 + \frac{u_2}{u_1}$ where $a_0 \in Z(i)$ is the quotient and $u_2 \in Z(i)$ is the remainder.

Again
$$\frac{u_1}{u_2} = a_1 + \frac{u_3}{u_2}$$
 where $a_1 \in Z(i)$ is the quotient and $u_3 \in Z(i)$ is the remainder.

And
$$\frac{u_2}{u_3} = a_2 + \frac{u_4}{u_3}$$
 where $a_2 \in Z(i)$ is the quotient and $u_4 \in Z(i)$ is the remainder....

$$\frac{u_{n-1}}{u_n} = a_{n-1} + \frac{u_{n+1}}{u_n} \text{ where } a_{n-1} \in Z(i) \text{ is the quotient and } u_{n+1} \in Z(i) \text{ is the remainder.}$$

And
$$\frac{u_n}{u_{n+1}} = a_n$$
 where $a_n \in Z(i)$ is the quotient and 0 is the remainder.

Here
$$\frac{u_j}{u_{j+1}} \in C$$
, $j = 0,1,2,...n$ Where a_i 's $\in Z(i)$, $i = 0,1,2,...n$ are the quotients and

 u_j 's $\in Z(i)$, j = 2,3,..n+1 are the remainders. These quotients are treated as the partial quotients of the $\frac{u_0}{u_1}$, the ratio of the complex numbers.

Therefore the complex continued fraction of $\frac{u_0}{u_1} = [a_0, a_1, ..., a_n]$.

Note:

1.
$$a_0 = \text{Re}\left[\frac{u_0}{u_1}\right] + i \text{Im}\left[\frac{u_0}{u_1}\right] + \alpha$$
 where α is a floor function and

$$\alpha = \begin{cases} 0 & \text{if } a+b < 0 \\ 1 & \text{if } a+b \geq 1 \text{ with } a \geq b \\ i & \text{if } a+b \geq 1 \text{ with } a < b \end{cases} \qquad a = \text{Re}\left(\frac{u_0}{u_1}\right) - \left[\frac{u_0}{u_1}\right] \text{ and } b = \text{Im}\left(\frac{u_0}{u_1}\right) - \left[\frac{u_0}{u_1}\right].$$

The successive quotients are found by the same procedure.

2. Remainders are found by using the relations $u_{j+1} = u_{j-1} - a_{j-1}u_j$, j = 1,2,...n.

Example 3.2.1: gcd (3+13i, 4+3i) Since N(3+13i) = 178 > 25 = N(4+3i), divide (3+13i) by (4+3i).

Therefore
$$\frac{3+13i}{4+3i} = (2+2i) + \frac{1-i}{4+3i} \implies \frac{4+3i}{1-i} = (3i) + \frac{1}{1-i} \implies \frac{1-i}{1} = (1-i).$$

Hence gcd(3+13i, 4+3i)=1.

Example 3.2.2: gcd(7-61i, 26-36i) Since N(7-61i) = 3770 > 1972 = N(26-36i), divide (7-61i) by (26-36i).

Therefore
$$\frac{7-61i}{26-36i} = (1-i) + \frac{17+i}{26-36i} \Rightarrow \frac{26-36i}{17+i} = (1-2i) + \frac{7-3i}{17+i} \Rightarrow \frac{17+i}{7-3i} = (2+i)$$

Hence gcd(7-61i, 26-36i) = 7-3i.

Definition:[3]

The function $F_f: C \to Z(i)$ is said to be a floor function if |F(z) - Z| < 1 for every $Z \in C$.

The function $F_s: C \rightarrow \{-1, 1, -i, i\}$ is said to be a sign function.

3.3 Complex continued fraction algorithm (J.O. Shalit,1979):10

If $F_f: C \to Z(i)$ is a floor function and $F_s: C \to \{-1,1,-i,i\}$ is a sign function together with the following sequence is known as a complex continued fraction algorithm.

(i)
$$Z_0 = Z$$

(ii)
$$a_n = F_f(Z_n)$$

(iii)
$$e_{n+1} = F_s(Z_n)$$

(iv)
$$Z_{n+1} = \frac{e_{n+1}}{Z_n - a_n}$$

3.4 Theorem

If
$$\left[a_0, \frac{e_1}{a_1}, \frac{e_2}{a_2}, \frac{e_3}{a_3}, \cdots \frac{e_j}{a_j}\right] = \left[b_0, \frac{f_1}{b_1}, \frac{f_2}{b_2}, \frac{f_3}{b_3}, \cdots \frac{f_n}{b_n}\right]$$
 where these finite complex continued fractions

are simple if $\frac{e_j}{a_j} > 1$ and $\frac{f_n}{b_n} > 1$ then j=n and $a_i = b_i$, $e_i = f_i$ for i=0,1,2,...n.

Proof:

Let
$$y_i = \begin{bmatrix} b_i, \frac{f_{i+1}}{b_{i+1}}, \frac{f_{i+2}}{b_{i+2}}, \frac{f_{i+3}}{b_{i+3}}, \cdots \frac{f_n}{b_n} \end{bmatrix}, y_i = \frac{p_i}{q_i}$$

$$= b_i + \frac{f_{i+1}}{b_{i+1}, \frac{f_{i+2}}{b_{i+2}}, \frac{f_{i+3}}{b_{i+3}}, \cdots \frac{f_n}{b_n}} = b_i + \frac{f_{i+1}}{y_{i+1}}.$$

Therefore we have $y_i > b_i$ and $y_i > 1$ for i = 0, 1, 2, ..., n-1 and $y_n = b_n > 1$.

Also $b_i = [y_i]$ for all $i, 0 \le i \le n$.

Since
$$\left[a_0, \frac{e_1}{a_1}, \frac{e_2}{a_2}, \frac{e_3}{a_3}, \cdots \frac{e_j}{a_j}\right] = \left[b_0, \frac{f_1}{b_1}, \frac{f_2}{b_2}, \frac{f_3}{b_3}, \cdots \frac{f_n}{b_n}\right]$$
, we write $y_0 = x_0$.

For that take $x_i = \frac{p_i'}{q_i'} \Longrightarrow x_{i+1} > 1$ for all $i \ge 0$. So that $a_i = [x_i]$ $0 \le i \le j$.

Therefore $b_0 = [y_0] = [x_0] = a_0$.

Also
$$x_i = \left[a_i, \frac{e_{i+1}}{a_{i+1}}, \frac{e_{i+2}}{a_{i+2}}, \frac{e_{i+3}}{a_{i+3}}, \cdots \frac{e_j}{a_j} \right], 0 \le i \le j$$

$$= a_i + \frac{e_{i+1}}{\left[a_{i+1}, \frac{e_{i+2}}{a_{i+2}}, \frac{e_{i+3}}{a_{i+3}}, \cdots \frac{e_j}{a_j} \right]}$$

$$= a_i + \frac{e_{i+1}}{x_{i+1}} \Rightarrow \frac{e_{i+1}}{x_{i+1}} = x_i - a_i = y_i - b_i = \frac{f_{i+1}}{y_{i+1}}.$$

Therefore $\frac{e_{i+1}}{x_{i+1}} = \frac{f_{i+1}}{y_{i+1}}$, i = 0,1,2,...n-1. So that $e_{i+1} = f_{i+1}$ and $x_{i+1} = y_{i+1}$ and $x_{i+1} = y_{i+1} = y_{$

for i = 0,1,2,...n-1.

Next to prove that j = n.

Case (i): j < n.

Since
$$x_i = y_i \Rightarrow [x_i] = [y_i] \Rightarrow a_i = b_i$$
.

Using Euclid's algorithm we get $\frac{p'_j}{q'_i} = x_j = a_j$. Which is a contradiction to $y_j > b_j$.

Case (ii): If j > n then we get the same contradiction.

So that j = n.

3.5 Theorem

If $z \in Q(i)$ then the continued fraction of z is finite.

Proof:

If
$$x_n = \frac{p'_n}{q'_n}$$
 then $x_{n+1} = \frac{e_{n+1}}{x_n - a_n} = \frac{f_{n+1}}{\frac{p'_n}{q'_n} - a_n} = \frac{f_{n+1}q'_n}{p'_n - a_nq'_n} = \frac{p'_{n+1}}{q'_{n+1}}$.

Therefore
$$x_{n+1} = \frac{p'_{n+1}}{q'_{n+1}} = \frac{f_{n+1}q'_{n}}{q'_{n+1}}$$
 for every $n \in N$.

As
$$|x_{n+1}| > 1$$
 and $|f_{n+1}| = 1$, $|q'_{n+1}| < |q'_n|$ for all $n \in N$.

As $q'_n \in Z(i)$ there exist $N \in N$ such that $q'_{N+1} = 0$.

If
$$q'_{N+1} = 0 \Rightarrow p'_N - q'_N a_N = 0 \Rightarrow \frac{p'_N}{q'_N} - a_N = 0 \Rightarrow x_N - a_N = 0$$
.

Therefore Euclidean algorithm terminates after N transformations.

This completes the proof of the theorem.

3.6 Theorem

If $z \in C \setminus Q(i)$ then the continued fraction of z is infinite.

Proof:

Every rational complex number represents a finite complex continued fraction.

Also in a finite continued fraction $x_n - a_n = 0$ where $a_n = [x_n]$.

If x_0 is irrational then $x_0 - a_0 \neq 0$ or $x_0 - [x_0] \neq 0$ or $x_0 - F_t(x_0) \neq 0$.

Suppose x_k is irrational then $x_k - F_l(x_k) \neq 0$.

are occurs in pair and continued fraction of these roots are infinite.

Consequently for every $n \in \mathbb{N}$, $x_n - a_n \neq 0$. So that continued fraction is infinite.

This completes the proof.

In this paper we try to find the solution of the quadratic equation $kx^2 - nx + n = 0$ where $k = \left[\frac{n}{2}\right]$ and n is odd. Since $n^2 - 4kn < 0$, the roots of the equation are complex. Also complex roots

If α_1 and α_2 are the complex roots of the equation $kx^2 - nx + n = 0$ then their continued fractions are

$$[c_0, c_1, c_2, ...]$$
 and $[d_0, d_1, d_2, ...]$ respectively. Where c_i 's and d_i 's $\in Z(i)$.

Here the continued fractions of α_1 and α_2 are calculated by using either using Euclidean algorithm or complex continued fraction algorithm and comparison of their continued fractions are made.

IV. ILLUSTRATIONS

4.1 Illustration

Find the complex continued fraction of the roots of the quadratic equation $4x^2 - 9x + 9 = 0$.

Solution

Roots of the above quadratic equation are $\alpha_1 = 1.1250 + 0.9922i$ and $\alpha_2 = 1.1250 - 0.9922i$

Case (i): Continued fraction of the root $\alpha_1 = 1.1250 + 0.9922i$

Take
$$x_0 = 1.1250 + 0.9922i$$
 Then $a = 1.1250 - (1) = 0.1250$ and $b = 0.9922 - (0) = 0.9922$

Therefore
$$[x_0] = 1 + 0 + i = 1 + i \Rightarrow a_0 = 1 + i$$
.

Now
$$x_1 = \frac{1}{[(1.1250 + 0.9922i) - (1+i)]} \Rightarrow x_1 = 7.9690 + 0.4973i$$

Round off the imaginary part to 0.5, $x_1 = 7.9690 + 0.5i$

Then
$$a=7.9690-(7)=0.9690$$
 and $b=0.5-(0)=0.5$

Therefore
$$[x_1] = 7 + 0 + 1 = 8 \Rightarrow a_1 = 8$$
.

Again
$$x_2 = \frac{1}{[(7.9690 + 0.5i) - (8)]} \Rightarrow x_2 = -0.1235 - 1.9923i$$

Then
$$a=-0.1235-(-1)=0.8765$$
 and $b=-1.9923-(-2)=0.0077$

Therefore
$$[x_2] = -1 - 2i + 0 = -1 - 2i \Rightarrow a_2 = -1 - 2i$$
.

$$x_3 = \frac{1}{[(-0.1235 - 1.9923i) - (-1 - 2i)]} \Rightarrow x_3 = 1.1408 - 0.0100i$$

Then
$$a=1.1408-(1)=0.1408$$
 and $b=-0.0100-(-1)=0.9900$

Therefore
$$[x_3]=1-i+i=1 \Rightarrow a_3=1$$
.

$$x_4 = \frac{1}{[(1.1408 - 0.0100i) - (1)]} \Rightarrow x_4 = 7.0666 + 0.5i$$

Then
$$a=7.0666-(7)=0.0666$$
 and $b=0.5-(0)=0.5$

Therefore
$$[x_4] = 7 + 0 + 0 = 7 \Rightarrow a_4 = 7$$
.

$$x_5 = \frac{1}{[(7.0666 + 0.5i) - (7)]} \Rightarrow x_5 = 0.2618 - 1.9651i$$

Then a=0.2618-(0)=0.2618 and b=-1.9651-(-2)=0.0349

Therefore $[x_5] = 0 - 2i + 0 = -2i \implies a_5 = -2i$.

$$x_6 = \frac{1}{[(0.2618 - 1.9651i) - (-2i)]} \Rightarrow x_6 = 3.7530 - 0.50i$$

Then a=3.7530-(3)=0.7530 and b=-0.5-(-1)=0.5

Therefore $[x_6] = 3 - i + 1 = 4 - i \Rightarrow a_6 = 4 - i$.

$$x_7 = \frac{1}{[(3.7530 - 0.50i) - (4 - i)]} \Rightarrow x_7 = -0.7942 - 1.6077i$$

Then a = -0.7942 - (-1) = 0.2058 and b = -1.6077 - (-2) = 0.3923

Therefore $[x_{7}] = -1 - 2i + 0 = -1 - 2i \Rightarrow a_{7} = -1 - 2i$.

Case (ii): Continued fraction of the root $\alpha_1 = 1.1250 - 0.9922i$

Take $x_0 = 1.1250 - 0.9922i$

Then a=1.1250-(1)=0.1250 and b=-0.9922-(-1)=0.0078

Therefore $[x_0]=1-i+0=1-i \Rightarrow a_0=1-i$.

Now
$$x_1 = \frac{1}{[(1.1250 - 0.9922i) - (1-i)]} \Rightarrow x_1 = 7.9690 - 0.4973i$$

Round off the imaginary part to 0.5,

$$x_1 = 7.9690 - 0.5i$$

Then
$$a=7.9690-(7)=0.9690$$
 and $b=-0.5-(-1)=0.5$

Therefore $[x_1] = 7 + -i + 1 = 8 - i \Rightarrow a_1 = 8 - i$.

Again
$$x_2 = \frac{1}{[(7.9690 - 0.5i) - (8 - i)]} \Rightarrow x_2 = -0.1235 - 1.9923i$$

Then
$$a = -0.1235 - (-1) = 0.8765$$
 and $b = -1.9923 - (-2) = 0.0077$

Therefore
$$[x_2] = -1 - 2i + 0 = -1 - 2i \Rightarrow a_2 = -1 - 2i$$
.

$$x_3 = \frac{1}{[(-0.1235 - 1.9923i) - (-1 - 2i)]} \Rightarrow x_3 = 1.1408 - 0.0100i$$

Then
$$a=1.1408-(1)=0.1408$$
 and $b=-0.0100-(-1)=0.9900$

Therefore
$$[x_3]=1-i+i=1 \Rightarrow a_3=1$$
.

$$x_4 = \frac{1}{[(1.1408 - 0.0100i) - (1)]} \Rightarrow x_4 = 7.0666 + 0.5i$$

Then a=7.0666-(7)=0.0666 and b=0.5-(0)=0.5

Therefore $[x_4] = 7 + 0 + 0 = 7 \Rightarrow a_4 = 7$.

$$x_5 = \frac{1}{[(7.0666 + 0.5i) - (7)]} \Rightarrow x_5 = 0.2618 - 1.9651i$$

Then a=0.2618-(0)=0.2618 and b=-1.9651-(-2)=0.0349

Therefore $[x_5] = 0 - 2i + 0 = -2i \implies a_5 = -2i$.

$$x_6 = \frac{1}{[(0.2618 - 1.9651i) - (-2i)]} \Rightarrow x_6 = 3.7530 - 0.50i$$

Then a=3.7530-(3)=0.7530 and b=-0.5-(-1)=0.5

Therefore $[x_6] = 3 - i + 1 = 4 - i \Rightarrow a_6 = 4 - i$.

$$x_7 = \frac{1}{[(3.7530 - 0.50i) - (4 - i)]} \Rightarrow x_7 = -0.7942 - 1.6077i$$

Then
$$a = -0.7942 - (-1) = 0.2058$$
 and $b = -1.6077 - (-2) = 0.3923$

Therefore
$$[x_7] = -1 - 2i + 0 = -1 - 2i \Rightarrow a_7 = -1 - 2i$$
.

From case(i) and case (ii) we get the complex continued fraction of the given equation are

$$\alpha_1 = [1+i, 8, -1-2i, 1, 7, -2i, 4-i, -1-2i, \cdots]$$
 and $\alpha_2 = [1-i, 8-i, -1-2i, 1, 7, -2i, 4-i, -1-2i, \cdots]$

4.2 Illustration

Find the complex continued fraction of the roots of the quadratic equation $11x^2 - 23x + 23 = 0$.

Solution

Roots of the above quadratic equation are $\alpha_1 = 1.0455 + 0.9990i$ and $\alpha_2 = 1.0455 - 0.9990i$ Similar to case (i) and case (ii) of previous illustration we find that the complex continued fraction of the given equation are $\alpha_1 = \begin{bmatrix} 1+i, 22, -1-2i, 1, 7, -1-2i, -2i, \cdots \end{bmatrix}$ and $\alpha_2 = \begin{bmatrix} 1+i, 22-i, -1-2i, 1, 7, -1-2i, -2i, \cdots \end{bmatrix}$

4.3 Illustration

Find the complex continued fraction of the roots of the quadratic equation $x^2 - 3x + 3 = 0$.

Solution

Roots of the above quadratic equation are $\alpha_1 = 1.50 + 0.8660i$ and $\alpha_2 = 1.50 - 0.8660i$

The complex continued fraction of the roots of the given equation are $\alpha_1 = \left[1+i, 2, \overline{-1-2i, 2-i}\right]$ and $\alpha_2 = \left[1-i, \overline{2-i, -1-2i}\right]$

4.4 Illustration

Find the complex continued fraction of the roots of the quadratic equation $x^2 - x + 1 = 0$. Roots of the above quadratic equation are $\alpha_1 = 0.50 + 0.8660i$ and $\alpha_2 = 0.50 - 0.8660i$

Solution

The complex continued fraction of the roots of the given equation are $\alpha_1 = [i, 2, \overline{-1-2i, 2-i}]$ and $\alpha_2 = [-i, \overline{2-i, -1-2i}]$

V. CONCLUSION

From the above illustrations we conclude that the complex continued fraction the quadratic equation of the form $kx^2 - nx + n = 0$ where $k = \left[\frac{n}{2}\right]$ and n is odd and >3 are $\alpha_1 = \left[c_0, c_1 = 2k, c_2, c_3, c_4, \ldots\right]$ and $\alpha_2 = \left[\overline{c_0}, c_1 = 2k - i, c_2, c_3, c_4, \ldots\right]$ If n = 3 then $\alpha_1 = \left[1 + i, 2, \overline{-1 - 2i, 2 - i}\right]$ and $\alpha_2 = \left[1 - i, \overline{2 - i, -1 - 2i}\right]$ If n = 1 and k = n then $\alpha_1 = \left[i, 2, \overline{-1 - 2i, 2 - i}\right]$ and $\alpha_2 = \left[-i, \overline{2 - i, -1 - 2i}\right]$. Hence If n > 3 the complex continued fraction of the roots of the above quadratic equation are infinite where as if n = 3 and when n = k = 1 the complex continued fractions are periodic.

REFERENCES

- 1. Arumugam S., Thangapandi Isaac A., Somasundaram A., "Complex Analysis", 9th Reprint, SciTech Publications (India) Pvt. Ltd., December 2007.
- 2. Ponnusamy S., "Foundations of Complex Analysis", Second edition, Narosa Publishing House, New Delhi.
- 3. Andrews G.E., "Number Theory", Hindustan Publishing Corporation, Delhi, India, 1989.
- 4. Silverman J.H., "A friendly introduction to Number Theory", fourth edition.
- 5. Neville Robbins, "Beginning Number Theory", Second edition, Narosa Publishing House, New Delhi.
- 6. Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, "An introduction to theory of numbers", Fifth edition, Wiley Student Edition, New Delhi.

- 7. Jonathan Browein, Alfvander Poorten, Jeffrey Shallit, Wadim Zudilin, "Never-ending Fractions An Introduction to continued fractions", Cambridge University Press.
- 8. Olds C.D., "Continued Fractions", Random House: New York, 1963.
- 9. Bosma W., Bastian cijsouw, "Complex Continued Fraction Algorithms", Thesis, Redbud University, November 2015.
- 10. Shalit J.O., Integer Functions and Continued fractions", A.B. Thesis, Princeton University, 1979.