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ABSTRACT 
              The study presents predictions for the coherent dynamical structure factor ),( kS  of liquid 

mercury (Hg) at 523 K with a density of 12.98 g/cm³. The theoretical results for detailed  ),( kS  have 

been reported in the wave-vector,   range, 0.9 Å
-1

 to 4.6 Å
-1

, using the modified microscopic theory of 

the collective dynamics of a simple liquid. In addition to the structure factor, the study also reports the 

dispersion relation, sound velocity, and diffusion coefficient for liquid mercury at this temperature and 

density condition and in this wave vector range. The dynamical structure factors predicted by this theory 

satisfy significant sum rules relevant to liquids and have an edge over microscopic theory by Hubbard-

Beeby (HB) ensuring the consistency and physical validity of the model. Comparison of ),( kS  

obtained from present modified theory and from microscopic (HB) theory has been made for smaller   

values. The results obtained from present theory are much more realistic as compared to the later theory. 

KEYWORDS: Dynamical structure factor, Modified microscopic theory, Current-current correlation 

function, Collective dynamics, Diffusion coefficient. 
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1. INTRODUCTION 

                   The coherent dynamical structure factor, which describes the momentum transfer and the 

energy exchange between external probe and the system, is the space-time Fourier transform of the van 

Hove space-time dependent correlation function 
1
. This function is a time-extended version of the static 

pair correlation function and offers detailed insight into the equilibrium dynamics of a system, 

regardless of whether the system exhibits lattice translational invariance (such as in crystals, disordered 

solids, or fluids). The dynamics of an interacting fluid is complex due to its disordered and correlated 

structure, involving both single-particle and collective motions. Despite this complexity, the fluid may 

exhibit well-defined collective modes that can be directly investigated through experimental techniques 

like thermal neutron inelastic scattering and inelastic X-ray scattering. However, these methods suffer 

from certain limitations. Due to significant incoherent scattering induced by neutron-nucleus 

interactions, it is difficult to isolate the coherent dynamical structure component from inelastic neutron 

scattering data. In contrast, inelastic X-ray scattering performed using highly resolved synchrotron 

radiation sources, can yield pure coherent structures, offering a clearer view of the liquid dynamics. 

These experimentally measured scattering cross-sections are related to the dynamical structure factors 

which can provide insight to the equilibrium dynamics. These structural functions are correlation 

functions which can reveal the presence of collective dynamics and can quantize the collective modes 

through their structures. A few inelastic X-ray scattering (IXS) experiments using high resolution high-

flux X-rays from synchrotron sources, have been performed to report coherent    ,S  of liquid Hg at 

293 K 
2-3

 and of gaseous Hg at rarer densities of 1.0, 2.0 and 3.1 gcm-
3
.
 4 

While the IXS experiment for 

liquid Hg accurately provided the ),( kS  in huge momentum transfer region 0.3 Å
-1

 ≤   ≤ 3.71 Å
-1

 

prevalent to two peaks of the static structure factor, in the case of Hg vapour dynamical structure factors 

for only a few (four) wave-vector values have been measured.  Though, some of neutron scattering 

studies 
5-6

 have also been reported for liquid Hg, but these are unable to provide pure coherent spectral 

information. The intermediate temperature range of liquid Hg however is unreported and collective 

dynamics in this region of the liquid-vapour curve have not been measured through by the IXS 

experiments. 

                  In the present study, collective dynamics of liquid Hg at 523 K comprising 12.98grams in 

one cubic centimetres, has been evaluated. The present predictions are based on the modified 

microscopic theory wherein microscopic behaviour of any condensed system is worked out to yield the 

density response function. This complex function, comprises an imaginary and a real part, describes the 
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space-time-dependant fluctuations in the density of any fluid in response to a weak perturbation. When 

Fourier transformed, the imaginary part of the transformed function is related to the dynamical structure 

factor, through fluctuation dissipation theorem, which is the most significant correlation function in this 

study. To incorporate inter-particle correlations which were not included in the previous theory 
7
, a 

characteristic relaxation time is introduced 
8
, which depends on various physical factors, including the 

static structure factor, density, temperature, mass, interaction potential, and diffusion coefficient. In this 

theory, the diffusion coefficient is generalized to be wave-vector dependent, with a specific value 

assigned to each wave-vector. This modification reduces the number of arbitrary parameters and 

provides a more accurate representation of the intermediate self-scattering function. The revised model 

has been successfully applied to describe the collective dynamics of several liquids. 
9-14

 

                  In this work, the same modified microscopic theory is used to predict the collective dynamics 

of liquid Hg at 523 K, aiming to explain its response to external radiation and to calculate the dynamical 

structure factor for liquid Hg. 

 

2. MATHEMATICAL FORMALISM 

                  Microscopic theory solves the microdynamics of any fluid to describes the density 

fluctuations and depict the courses of moving particles. For further understanding intricate space-time 

dependant correlation functions are defined which then are approximated to attain results for the 

dynamical structure factor. During the evolution of the theory and in the evaluation of the dynamical 

structure factors in the microscopic theory, the distinct time correlations were not taken in to account. 

The outcomes for the dynamical structure factors generated, hence, were rather damped and were not in 

the agreement to the experimentally observed spectral lineshapes. The theory is modified, therefore, by 

Tewari et al. 8 including the neglected correlations for which a characteristic relaxation time is 

introduced. This form of the modified microscopic theory has successfully explained the dynamical 

structure factors for several liquids 
15-18

. 

The dynamical structure factor in this is aquires the following form: 
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                      (1) 

In the expression (1), β’’ = Deff κ
2
, Deff is ω–dependant diffusion coefficient, and β=(kBT)

-1
. 

And, ϒ = τ(κ)
-1

, τ(κ)
-
is the relaxation time defined in the present theory as follows: 
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In the expression (2)   = D 2 , D is the diffusion coefficient that varies with κ, m is the atomic 

mass and  S  is the static structure factor can be obtained from the Fourier transform of the 

 g r as follows: 
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The frequency   occurred in the expression (1) and (2) is given as follows:  
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Here,  rV  is the inter-atomic potential  g r  is the static pair correlation function and z is the space 

coordinate. 

The elastic frequency E  and 0r  occurred in the expression (2) are given respectively, as: 
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And peak r = 0r  of the delta function 
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The current-current correlation function  is given as follows:   

          (7) 
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3. RESULTS AND DISCUSSION 

                 As suggested by the mathematical section, modified microscopic theory requires knowledge 

of inter-particle interaction potential for further evolution of dynamics study. A few attempts to generate 

interparticle interaction potential of Hg in different phases have been made. In gaseous Hg, due to the 

presence of uncharged atoms, interaction potential comprises a hard core repulsive part along with an 

attractive part of van der waal’s form 
19

, whereas the liquid state of Hg contains loosely bound electrons 

with Hg ions, resulted in the presence of long range oscillatory attractive part 
20

. The repulsive part of 

liquid Hg, however, is of the usual hard core form. The considered system of Hg atoms, subject to the 

physical conditions of 523 K temperature ( and density of 12.98 g/cc), however, is essentially a state 

along liquid-vapour co-existence curve. An interaction potential that is suggested by Stefanov etal. 

21
,which id determined by distinct physical quantities along liquid-vapour curve, therefore, has been 

used in the present work. This potential is quite different from the L-J 
19

 form of potential for gaseous 

Hg that is applicable in the case of inert gas atoms. Further, the potential has successfully reproduced the 

experimentally measured static structure factor 
20

 also. 

                The interaction potential is when substituted in expression (5) yields the maximum Einstein 

frequency E  and 0r for liquid Hg that turn out to be 7.116x10
12

 s
-1

 and 2.76 Å, respectively. The 

experimentally measured static pair correlation function  rg  reported by Inui et al. 
22 

and also 

reproduced using this potential form for Hg 
20

, has been used here. These two entities are further 

substituted into expression (4) to evaluate  . The static structure factor  S  which is evaluated by the 

Fourier transform of static pair correlation function  rg using expression (3) along with the evaluated 

 are collectively substituted in the expression (3) to provide the characteristic relaxation time    

that has been introduced in the modified microscopic theory to incorporate distinct correlations, for 

different values of wave-vector, . The diffusion coefficient, D, occurring in the expression (3) has 

appeared as an arbitrary parameter to satisfy the zeroth sum rule for a given value of wave-vector . The 

detailed dynamical structure factors can now be calculated using expression (1). 
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Figure 1: Variation of the dynamical structure factor,  ,S   of liquid mercury at 523 K with frequency, : (——) 

at =0.9 Å
-1 

, = 1.2 Å
-1 

, = 1.4 Å
-1

 and  =1.6 Å
-1

. 

 

                The dynamical structure factors were calculated using expression (1) for different wave-vector 

values, spanning a wide range from 0.9 Å
-1

≤ ≤ 4.6 Å
-1

. The results, showing how the structure factors 

vary with frequency, are presented in three figures: Figure 1:  =0.9 Å
-1

;  =1.2 Å
-1

;  =1.4 Å
-1

 and 

 =1.6 Å
-1 

with solid curve (────); Figure 2:  =1.8 Å
-1

;  =2.0 Å
-1

;  =2.4 Å
-1

 and  =2.7 Å
-1 

with solid curve (────) and Figure 3:  =3.0 Å
-1

;  =3.5 Å
-1

;  =4.0 Å
-1

 and  =4.3 Å
-1 

and  = 

4.6 Å
-1 

with solid curve (────). 
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Figure 2: Variation of the dynamical structure factor,  ,S   of liquid mercury at 523 K with frequency,  : (——) 

at = 1.8 Å
-1 

, = 2.0 Å
-1 

, = 2.4 Å
-1

 and  =2.7 Å
-1

. 
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                In these calculations, the effective diffusion coefficient, Deff  has not been varied with 

frequency and is same as the diffusion coefficient given in expression (2). As s evident from three 

Figures , at higher wave-vectors, the dynamical structure factors appear damped and exhibit structures 

without Brillouin peaks except at 0.9 Å
-1

 . This trend of variation when compared to the liquid Hg at 293 

K,  are found in sync with the experimentally measured data via Inelastic X-ray Scattering (IXS) 17 of 

later consideration where prominent side peaks has been observed up to   =0.8 Å
-
1 and for also a 

subdued Brillouin peak in dynamical structure factor has appeared.   

0 4 8 12 16 20

0.00000

0.00005

0.00010

0.00015

0 4 8 12 16 20 24

0.00000

0.00001

0.00002

0.00003

  = 3.5 A
o
 
-1

  = 3.0 A
o
 
-1

 (A
o
 
-1
)    

 (ps
-1
)

 (ps
-1
)

0 4 8 12 16 20

0.00000

0.00004

0.00008

0.00012

  = 4.0 A
o
 
-1

 (ps
-1
)

0 4 8 12 16 20

0.00000

0.00005

0.00010

0.00015

0.00020

  = 4.3 A
o
 
-1

 (ps
-1
)

0 4 8 12 16 20

0.00000

0.00005

0.00010

0.00015

0.00020

  = 4.6 A
o
 
-1

D
(



) 
 (

c
m

2
/s

) 

S
(


) 
 (

n
s

) 

2 4 6

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

0.00022

0.00024

S
(


) 
 (

n
s

) 
S

(


) 
 (

n
s

) 

S
(


) 
 (

n
s

) 
S

(


) 
 (

n
s

) 

 (ps
-1
)

 D(tau)(a)

 

 

Figure 3: Variation of the dynamical structure factor,  ,S   of liquid mercury at 523 K with frequency, : (——) 

at =3.0 Å
-1 

, = 3.5 Å
-1 

, = 4.0 Å
-1

,  =4.3 Å
-1

 and  =4.6 Å
-1

. 

 
Figure 3(a):  Variation of the diffusion co-efficient with wave-vector : with (- - -). 

 

                The attained results for the self-Diffusion coefficient that serves as a fitting parameter of 

the theory have been plotted in Figure 2(a) against wave-vector k : with dashed curve (- - -).The 

obtained values of the diffusion coefficient have been shown in Figure 2(a) as against wave-

vector k : with dashed curve (- - -). As can be seen from the figure, the diffusion coefficient varies about 

an order in the entire  -range of 0.9 Å
-1

≤ ≤ 4.6 Å
-1

. The diffusion coefficient acquires the  -

dependant form in the present theory and is obtained to generate that justify the zeroth sum rule of 

liquid along with the other sum rules. This significant sum rule (zeroth sum rule) has not been 

obeyed by the dynamical generated by the microscopic theory of HB 7. In Figure 4, results for 

  ,S  obtained from two theories have been obtained for smaller   values: (────) present 

modified theory and (- - -) HB theory for  =0.9 Å
-1

,  =1.2 Å
-1

,  =1.4 Å
-1

 and  =1.8 Å
-1

. The 

comparative advancement of results from present theory is clearly evident from the figure where 

the outcomes from older microscopic theory (HB) are much sharper as compared to the results of 

present theory which provides a more realistic picture. 
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Figure 4: Variation of the dynamical structure factor,  ,S   of liquid mercury at 523 K with frequency,  under 

different considerations: (——) present theory; (- - -) older HB theory. 

 

 

                Figure 5(a) presented the evaluated results of  , current-2 correlation function, derived 

from the dynamical structure factors as two are connected through expression (6). for different wave-

vector k  values and has been drwan as their variation against ω: (────) = 0.9 Å
-1

; (────)  = 

1.2 Å
-1

; (────) = 1.4 Å
-1

; (────) = 1.6 Å
-1

; (────)  = 1.8 Å
-1

; (────) = 2.0 Å
-1

; 

(────) = 2.4 Å
-1

;
 
(────)  = 2.7 Å

-1
; (────) = 3.0 Å

-1
;
 
(────)  = 3.5 Å

-1
;
 
(────)  = 

4.0 Å
-1

;
 
(────)  = 4.3 Å

-1
; 

 
(────)  = 4.6 Å

-1
. The peak positions of current-2 correlation 

functions provide the collective mode frequencies of given liquid. 
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Figure 5: Current-2 correlation functions  for liquid Hg at 523 K versus   for: (────) = 0.9 Å
-

1
; (────)  = 1.2 Å

-1
; (────) = 1.4 Å

-1
; (────) = 1.6 Å

-1
; (────)  = 1.8 Å

-1
; (────) = 2.0 

Å
-1

; (────) = 2.4 Å
-1

;
 
(────)  = 2.7 Å

-1
; (────) = 3.0 Å

-1
;
 
(────)  = 3.5 Å

-1
;
 
(────)  = 

4.0 Å
-1

;
 
(────)  = 4.3 Å

-1
; 

 
(────)  = 4.6 Å

-1
. 

 

                In figure 6(a), variation of the collective mode frequencies,  with wave vector 

 , the dispersion relation for liquid Hg at 523 K, has been plotted with a solid-square 

curve (-■-). The values of   are predicted from the peak positions of current-2 

correlation functions shown in the figure 5. As can be seen from the figure, collective 

modes frequencies,  , first decreases to a minimum at  =2.0-2.4 Å
-1

, increases with 

increase in  to maximum and then decreases for higher wave-vectors. A second maxima 

at  =3.5 Å
-1

 has been seen in the figure. Hence, the usual trend for variation of  versus 

 , has been obtained for liquid Hg.  
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Figure 6(a): Dispersion relations for liquid Hg at 523 K from present theoretical calculations and 

deduced from current-2 correlation function: p  vs.  : (-■-). 

Figure 6(b): Velocity of sound in liquid mercury at 523 K as depicted from figure 5(a) vs.  wave-vector, 

 : (─■─). 

  

                Figure 6(b) shows, with a solid-circle curve (-●-) the velocities of sound as 

obtained from the dispersion relation (= / ) of figure 6(a) and have been shown as 

their variation against . The computed sound velocity are expected to agree with the 

experimental measurements at  =0 and in present theory can be evaluated for  →0 17 

to be 2.4 km/s.  

4. CONCLUSION 

                The study can be concluded to effectively foretell the collective dynamics of liquid 

Hg at 523 K using the modified microscopic theory which is a way better than the older 

microscopic theory. This theoretical approach, incorporates particle correlations by defining 

the relaxation time to account for inter-particle interactions and It provides a means to 

calculate key properties such as the diffusion coefficient, collective modes, and sound 



Dhingra Garima et. al, IJSRR 2024, 13(4), 64-77 

IJSRR, 13(4) Oct. – Dec., 2024                                                                                                     Page 75   

velocity. The defines relaxation time to include distinct particle correlations and yields 

diffusion coefficient, collective modes, and the velocity of sound 
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