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ABSTRACT 

In this manuscript, thermo elastic interactions in a homogeneous isotropic generalized 

medium are analyzed through estimating the effects of rotation, initial stress, fractional order 

parameter and temperature dependent properties on different fields inside the medium. Formulation 

of the problem is employed in the context of fractional order theory of generalized thermo elasticity. 

Governing equations of the general one-dimensional problem are shaped into matrix form using 

Laplace transform and state-space approach. Solutions of the problem in the physical domain are 

obtained by using a numerical method of the Laplace inverse transform based on the Fourier 

expansion technique, and the expressions for the displacement, temperature, and stress inside the 

medium are obtained. Numerical computations are carried out for a particular material for illustrating 

the results. Results obtained for the field variables are displayed graphically. 

KEYWORDS: Fractional order thermo elasticity, initial stress, rotation, temperature dependent 
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INTRODUCTION 
During recent years fractional calculus has developed rapidly. This process is still going on, 

but we can already recognize, that within the framework of fractional calculus new concepts and 

strategies emerge, which make it possible, to obtain new challenging insights and surprising 

correlations between different branches of science and technology. Povstenko1 has constructed a 

quasi-static uncoupled thermo elasticity model based on the heat conduction equation with fractional 

order time derivatives. Sherief et al.2 and Youssef3 presented theories of fractional order thermo elastic 

models under different considerations. A new model of fractional heat conduction equation using new 

taylor series expansion for time-fractional order was established by Ezzat4. Kumar and Gupta5 

analyzed the reflection and transmission phenomena at an interface between elastic solid half space and 

a micro polar thermo elastic solid half-space with fractional order derivative. 

The development of initial stresses in the medium is due to many reasons, for example, 

resulting from variation of temperature, process of quenching, overburden layer and slow process of 

creep, gravitation, weight, largeness, and so forth. Many authors have contributed their efforts to 

study the wave propagation in solids under initial stresses for various models. The study of reflection 

and refraction phenomena of plane waves in an unbounded medium under initial stresses is due to 

Chattopadhyay et al.6. Montanaro7 constructed the model of isotropic linear thermo elasticity with 

hydrostatic initial stress. Singh8 explored the effect of hydrostatic initial stress on waves in a thermo 

elastic half-space. Deswal et al.9 studied the dynamical interactions of the thermal, elastic and 

diffusion fields under the fractional order generalized thermo elasticity theory with diffusion, two-

temperature and initial stress. 

The elastic modulus is an important physical property of materials reflecting the elastic 

deformation capacity of the material when subjected to an applied external load. It is well known that 

the physical properties of engineering materials vary with temperature. Ezzat et al.10 solved a 

problem of generalized thermo elasticity with two relaxation times in an isotropic elastic medium 

with temperature-dependent mechanical properties. A general model of the equations of generalized 

thermomicrostretch for a homogeneous isotropic half-space with temperature-dependent properties 

was presented by Othman et al.11. Othman and Said12 investigated the influence of magnetic field 

and temperature dependent properties on the plane waves in a fiber reinforced thermo elastic medium 

in the context of three-phase lag theory and Green–Naghdi theory without energy dissipation. 

Recently, Yadav et al.13 studied propagation of waves in an initially stressed generalized 

electromicrostretch thermo elastic medium with temperature-dependent properties under the effect of 

rotation. 
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In the present paper, we study the effects of temperature dependent properties, rotation and 

initial stress under fractional order theory of thermo elasticity proposed by Sherief et al.2. We 

employ a state space approach developed by Bahar and Hetnarski14 on the formulation. Resulting 

formulation is then applied to a specific problem of an elastic half-space whose boundary is 

subjected to an instantaneous thermal load. Inversions of the Laplace transforms are computed 

numerically by using the method introduced by Honig and Hirdes15. Finally, numerical estimates of 

the field variables have been displayed graphically in order to illustrate the problem in greater detail 

and the effects of rotation, initial stress, fractional parameter and temperature dependent properties 

on the distribution of different fields are analyzed. 

PROBLEM FORMULATION 
Following Sherief et al.2 and Montanaro7, The generalized field equations and constitutive 

relations for a rotating initially stressed thermo elastic continuum with temperature dependent 

properties are: 

The constitutive relation: 

2 ( ),ij ij ij ij ij ije e p                      (1)                  

 with    , ,
1 ( ),
2ij i j j ie u u           (2)   

Equation of motion:                         

, ( ( ) 2 ( )) ,ji j iu u u          
                   (3) 

Heat conduction equation with fractional derivative heat transfer: 

 ,
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m
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ii Em
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   

    
         

         (4)
     

where , ,
1 ( ),
2ij j i i ju u  

 
ij  and ije  denote the components of stress tensor and strain tensor 

respectively, u  is displacement vector, e is cubical dilatation and  =  3 2 t  
 
is the material 

constants, t  is coefficient of linear thermal expansion,  and  are generalized Lame’s constants,  

satisfying the relations
(1 )(1 2 )

E


  


 
 and 2 (1 )E

 

  . Here ,E   and   are Young’s 

modulus, Poisson’s ratio and initial stress parameter respectively. 0  is thermal relaxation time, 

0T T   , T is absolute temperature, 0T is temperature of medium in natural state,  is the density 
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of medium, K  is the thermal conductivity, p is initial stress,  ij  is the Kronecker delta function and 

m  is the fractional order parameter such that 0 1m  . The medium is rotating with uniform 

angular velocity n̂ 


, where n̂  is the unit vector in the direction of the axis of rotation.
 Here, a comma followed by a suffix denotes material derivative, a superimposed dot denotes 

derivative with respect to time and the tensor convention of summing over repeated indices is used. 

Our aim is to examine the effect of the temperature dependent nature of the material. So we 

assume that (Following Othman and Said12) 

1 1 1 *
0

1( , , ) ( , , ),
1 T

     



         (5)  

where * is an empirical elastic constant. 

We consider a one-dimensional problem in which the field variables depend on a single space 

co-ordinate x (say) and time t. Hence we take    , , ,u u x t x t    with 

 ,0,0 , (0,0, )u u   
  and .ue

x





 

Proceeding with the analysis, we state the non-dimensional quantities 
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
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
  . 

Using the above values, equations (1), (3) and (4) can be reduced to non-dimensional forms as 

(omitting the primes for simplicity) 

0 ( ) ,a e p                  (6) 

2
2

2 ,u u
x t
 

  
 

               (7) 
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                 (8) 

where 
( 1 )

2
* *0 1 0

1 2 0 0 0* , , 1 .
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Equation (7) can be written as 
2 2

2
2 2 ,e e

x t
 

  
          (9) 
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We now define Laplace-Fourier double integral transform of a function  ,f x t  by 

   
0

, , stf x s f x t e dt


  ,          (10) 

Applying Laplace transform defined by equation (10) to both sides of equations (6), (7) and 

(9) under homogeneous initial conditions, one obtains 

0 ( ) ,pa e
s

             (11) 

2
1 1( ),D g s s e             (12) 

2 2 2( ) ,D s e             (13) 

Eliminating e  from (16), we arrive at the following system of differential equations 

2
1 2 3

2
1 2 3

,

,

D L L L
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  

  
                          (14) 

where ,dD
dx

  
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,g sL
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 1 1
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,g pL
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 2 2
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2
0

,MM
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 2
3 .M pM

s
  

STATE SPACE FORMULATION 

Choosing temperature of heat conduction   and stress component   in x-direction as state 

variables, set of equations (14) can be written in the matrix form as 

       2 , , ,D V x s A s V x s B x s  ,       (15) 

where    
      31 2

31 2

,
, ,  and ,

,
LL Lx s

V x s A s B x s
MM Mx s



    

      
    

. 

The formal solution of equation (15) can be expressed as 

         1 1, exp 0, ( ) 0, ( ) , ,V x s A s x V s A s B s A s B x s             (16) 

where 

   
 

0

0

0,
0,

0,
s

V s
s

 
 
   

    
  

 and I is a unit matrix of order 2. 

With the view of getting the bounded solution for large x, we have retained the part of 

exponential that has a negative power. 
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We shall use well-known Cayley-Hamilton theorem to find the form of the matrix 

 exp A s x   . The characteristic equation of the matrix  A s  can be written as 

   2
1 2 1 2 1 2 0k L M k L M M L     .  

The roots of the equation, namely, 1k  and 2k , satisfy the following relations 

 1 2 1 2k k L M    , 1 2 1 2 1 2k k L M M L  .  

The Taylor series expansion of the matrix exponential has the form 

0

( )
exp ( )

!

n

n

A s x
A s x

n





       .        (17) 

 Using the well known Cayley-Hamilton theorem, we can express 2A  and higher orders of the 

matrix A  in terms of I  and A , where I  is the unit matrix of second order. 

 Therefore, the infinite series in Eq. (17) can be reduced to the form 0 1exp ( ) ( )A s x I A s      .                                                             

   (18) 

 where 0  and 1  are the parameters depending on x and s . 

 As a consequence of Cayley-Hamilton theorem, the characteristic roots 1k  and 2k  of the matrix 

must satisfy equations 

1 0 1 1exp k x k      ,              (19)                                                                                                    

2 0 1 2exp k x k      .                                                                                        (20) 

Solution of this system of linear equations yields 

2 1
1 2

0
1 2

k x k xk e k e
k k


 




,                                                                                 (21)  

1 2

1
1 2

k x k xe e
k k


 




.                                                                                                     (22) 

Hence, using (21) and (22) along with I and ( )A s  into Eq. (18), we obtain exp ( ) ( , )ijA s x L x s   

  ( , 1,2)i j                                                                      (23) 

where 

2 1
1 1 2 1
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1 2
1

21
1 2

( ) ,
k x k xM e eL
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     

1 2
2 2 1 2

22
2 1

( ) ( ) .
k x k xe k M e k ML

k k
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

  

Now, the solution in Eq. (34) can be written in the form 

            1 1, 0, 0, , .ijV x s L V s A s B s A s B x s                                                            (24)                                             

Inserting the required values in Eq. (24), we obtain the following expressions for temperature and 

stress as 

2 1
1 1 0 1 2 0 2 2 1 0 1 2 0 2

1
1 2

(( )( ) ( )) (( )( ) ( )) ,
k x k xe k L L e k L L

k k
       

 
         

 
  (25) 

2 1
1 0 1 1 2 0 2 1 0 1 2 2 0 2

2
1 2

( ( ) ( )( )) ( ( ) ( )( )) ,
k x k xe M k M e M k M

k k
       

 
          

 
           (26) 

where  32
1 2

1 1
, ,TT

T T
    

and   1 1 2 1 2 2 2 3 2 3 3 1 3 1 3, , .T L M M L T M L L M T M L L M        

BOUNDARY CONDITIONS 

When the plane boundary is free from stress and is subjected to a thermal load, the boundary 

conditions on the surface x= 0 are 

0, ( ),zz p P t                     (27) 

where  P t  is a given function of  t. 

 Employing non-dimensional variables and Laplace transform on Eqs. (27), alongwith 
0

PP
T

  , we 

get 

0(0, ) ,ps
s

                                                                     

                                                                  (28)                                                                 

0(0, ) .Ps
s

       

 Using these values of 0  and 0 , the final expressions for temperature and stress and in the Laplace 

transform domain are obtained as 
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       2 1
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k x k xp pP Pe k L L e k L Ls s s s
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    



            
(29)    

        

       2 1
1 1 1 2 2 1 1 2 2 2

2
1 2

( ) ( )
,

k x k xp pP Pe M k M e M k Ms s s s
k k

   
 

                  
    



            
(30) 

From equation (13), expression of displacement in the transformed domain is 

 

       2 1
2 1 1 1 2 2 1 1 1 2 2 22 2

1 2

1 ( ) ( ) ,
( )( )

k x k xp pP Pu k M k M e k M k M es s s ss k k
                              

             

            (31) 

LIMITING CASES 
Following cases can be recognized from the preceding section as  

0   Fractional order theory of generalized thermo elasticity with initial stress and 

temperature dependent properties; 

0p   Fractional order theory of generalized thermo elasticity with rotation and temperature 

dependent properties; 
* 0   Fractional order theory of generalized thermo elasticity with rotation and initial stres; 

1m   Generalized theory of thermo elasticity with rotation, initial stress and temperature 

dependent properties. 

INVERSION OF THE TRANSFORMS 
It is difficult to find the analytical inverse Laplace transform of the complicated solutions for 

the displacement, temperature and stress in the Laplace transform domain. So we have to resort to 

numerical computations.  In order to obtain the solution of the problem in the physical domain, we 

invert the Laplace transformation in equations (29)-(31) by adopting the methodology of Honig and 

Hirdes15. 

NUMERICAL RESULTS AND DISCUSSION 
In this section, we perform some numerical calculations in order to illustrate the analytical 

results. The material chosen for this purpose is copper whose characteristics are as follows  
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    

       

 

Considering the above physical data, we compute the numerical values of displacement, 

temperature and stress component for a wide range of distance x . The results are displayed through 

various figures. From clarity point of view, we have divided the graphical representations into two 

categories. Category I (Figures 1-3) explores the influence of rotation and temperature dependent 

properties on field variables. By taking 0  , rotation effect is neglected and by taking * 0   

temperature dependent properties are neglected. Pattern of different generalized thermo elastic fields 

in the presence and absence of initial stress and fractional order parameter is observed in Category II 

(Figures 4-6).  

 

Category I 
Figure 1 exhibits the effect of rotation and temperature dependent properties on displacement 

field. The profile of displacement field is very much similar in all the three cases attaining maximum 

value at x=0 and ultimately tending to zero. The numerical values of displacement field is less in the 

main case in comparison to that of other two cases. Thus rotation as well as temperature dependent 

properties has decreasing effect on displacement distribution. 
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Fig. 1: Effect of rotation and temperature dependent properties on displacement distribution 
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Fig. 2: Effect of rotation and temperature dependent  properties on temperature distribution 

Figure 2 displays the behavior of temperature distribution in the direction of wave propagation.  

It begins with non zero values on the boundary abiding by an increasing fashion of variations for all the 

considered cases. At x=0, non zero value of temperature is in accordance with boundary condition. 

Presence of rotation and temperature dependent properties  affect the temperature field  by decreasing 

its values. 
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Fig. 3: Effect of rotation and temperature dependent properties on stress distribution 
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Figure 3 exhibits the variations of stress in the presence and absence of rotation and 

temperature dependent properties. We found that the behavior of stress component in all the three 

cases is alike. Due to the presence of initial stress, the curves begins with non zero positive value 

ultimately tending to non zero constant value. Presence of rotation and temperature dependent 

properties has decreasing effect on numerical values of stress component. 

Category II            

 Figure 4 shows the effect of initial stress and fractional parameter on displacement 

distribution. Presence of initial stress increases the values of displacement distribution. Thus initial 

stress exhibits increasing effect on displacement. Presence of fractional parameter minifies the 

numerical values of displacement distribution before x=0.7 while magnifies after x=0.7. Thus 

fractional parameter has mix kind of effect on displacement distribution. 

Figure 5 exhibits temperature distribution in the presence and absence of initial stress and 

fractional parameter. We can see that initial stress and fractional parameter have a noticeable effect 

on the temperature. Numerical values of temperature field are larger in magnitude in generalized 

thermo elasticity theory as compared to fractional order generalized thermo elasticity theory, which 

indicates that fractional parameter has a decreasing effect. On the other hand, initial stress has 

increasing effect on temperature. It is noticed that in the absence of initial stress temperature field 

ultimately tends to zero while in the other two cases, temperature is non zero in the whole range of x. 
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Fig. 4: Effect of initial stress and fractional parameter on displacement distribution 
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Fig. 5: Effect of initial stress and fractional parameter on temperature distribution 
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Fig. 6: Effect of initial stress and fractional parameter on stress distribution 

Figure 6 is plotted to evince the effects of initial stress and fractional parameter on stress 

distribution. It is clear from the figure that in the absence of initial stress, stress field begins with zero 

value and ultimately tends to zero which is physically admissible. Initial stress enhances the 

numerical values of stress field while fractional parameter decreases the values of stress field 

numerically. Thus initial stress and fractional parameter have increasing and decreasing respectively 

on stress distribution.  
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CONCLUSIONS  
Behavior of displacement, temperature and stress in a rotating initially stressed thermo elastic 

medium with temperature dependent properties due to thermal load has been examined within the 

framework of generalized thermo elasticity theory of fractional order heat conduction by using state 

space approach. Following observations emerge from the present investigation: 

 Rotation and temperature dependent properties act as a decreasing agent for all the physical 

fields.  

 Initial stress is also found to be the prominent factor affecting the variations of all the 

generalized fields pertaining to our considered model. 

 It is  interesting to notice from Figure 6 that in the absence of initial stress, stress component 

begins with zero value and temperature and stress distributions tend to zero. 

 The effect of fractional parameter on all the studied fields is very much significant. 
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